نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد، گروه علوم دامی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد ، ایران.

2 استادیار،گروه علوم دامی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد ، ایران.

3 استاد،گروه علوم دامی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد ، ایران.

چکیده

این پژوهش به‌منظور بررسی تأثیر تراکم مواد مغذی جیره پایانی و سن کشتار بر بازده ابقای انرژی و پروتئین در جوجه های گوشتی انجام شد. تعداد 300 قطعه جوجه‌خروس 23 روزه سویه کاب 500 در قالب طرح کاملاً تصادفی به‌صورت فاکتوریل 5×2، با 10 تیمار، شش تکرار و پنج قطعه در هر تکرار گروه بندی شدند. تیمارهای آزمایشی شامل تنظیم جیره پایانی با تراکم مواد مغذی معادل 92/5، 95، 97.5، 100 و 102.5 درصد پیشنهاد سویه و کشتار در سنین 38 و 46 روزگی بودند. با افزایش تراکم مواد مغذی جیره پایانی افزایش وزن بدن، بازده خوراک، بازده ابقای انرژی و پروتئین به طور خطی و معنی دار افزایش و احتیاج انرژی نگهداری به ازای افزایش واحد وزن بدن کاهش یافت (0.05>P). افزایش سن کشتار از 38 روز به 46 روز باعث بروز تأثیر منفی و معنی دار بر شاخص های فوق شد (0.05>P). پرندگان تغذیه شده با جیره پایانی با تراکم مواد مغذی 97.5 درصد پیشنهاد سویه بالاترین مقدار عددی مصرف خوراک باقی مانده را داشتند. سطح مطلوب مواد مغذی جیره پایانی جوجه های گوشتی ‌به منظور بهینه سازی افزایش وزن بدن، بازده خوراک، بازده ابقای انرژی و پروتئین با استفاده از مدل رگرسیونی خط شکسته خطی به ترتیب 101.7، 99.2، 97.7 و 99.5 درصد پیشنهاد سویه برآورد شدند. مقادیر به دست آمده 5.5-2.3 درصد کمتر از مقادیر برآوردی توسط مدل خط شکسته درجه دو بودند. بر اساس نتایج این آزمایش، شاخص مصرف خوراک باقی مانده می تواند یک معیار مناسب برای سنجش بازده انرژی جیره باشد. تنظیم جیره پایانی جوجه‌های گوشتی با تراکم مواد مغذی کمتر از 97.5 درصد سطح پیشنهاد سویه مناسب نیست.

کلیدواژه‌ها

عنوان مقاله [English]

The effect of finisher diet nutrient density and slaughter age on energy and protein retention efficiency of broiler chickens

نویسندگان [English]

  • Mahdie Nikbakhetzadeh 1
  • Heydar Zarghi 2
  • َAbolghasem Golian 3

1 Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran

2 Department of animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran

3 Animal Science Department, Ferdowsi University of Mashhad

چکیده [English]

The aim of this study was to investigate the effect of finisher diet nutrient density and slaughter age on energy and protein retention efficiency of broiler chickens. Three hundred 23-day-old Cobb-500 male broiler chickens were assigned in a 5×2 factorial arrangement of completely randomize design with 10 treatments, 6 replicates and 5 birds each. The experimental treatments included five nutrient levels of finisher diets (102.5, 100, 97.5, 95, and 92.5% levels of nutrient composition recommendations stated by the Cobb-500 Commercial Management Guide) and two slaughtered ages (38 and 46 days of age). As increased dietary nutrient density significantly and l inearly
increased weight gain, feed efficiency, energy and protein retention efficiency and decreased maintenance energy requirements per unit of weight gain (P<0.05). By increasing slaughter age from d38 to d46, above indices significantly deteriorated (P<0.05). The highest residual feed intake belonged to birds fed the finisher diet with 97.5% of strain recommendation nutrients level. Dietary nutrient density level for optimal weight gain, feed efficiency, and energy and protein retention efficiency by linear broken line models were estimated 101.7, 98.7, 97.7 and 99.5% of strain recommendation, respectively. Whereas, these values were 2.3-5.5 percent less than those estimated by the quadratic broken-line model. As a conclusion, residual feed intake methodology can be a viable alternative to measure dietary energy efficiency. Formulation broiler finisher diet with nutrients concentration lowers than 97.5% of strain recommendation is not suitable.

کلیدواژه‌ها [English]

  • Keywords: Broiler chickens
  • Energy Efficiency
  • Nutrient density
  • Regression models
  • residual feed intake
  • slaughter age
1. Albuquerque R, Faria DE, Junqueira OM, Salvador D, Faria Filho DE, Rizzo MF (2003) Effects of energy level in finisher diets and slaughter age of on the performance and carcass yield in broiler chickens. Revista Brasileira de CiA ncia AvÃcol 5: 99-104.
2. Baéza E, Arnould C, Jlali M, Chartrin P, Gigaud V, Mercerand F, Durand C, Meteau K, Le Bihan- Duval E, Berri C (2012) Influence of increasing slaughter age of chickens on meat quality, welfare, and technical and economic results. Journal of Animal Science 90: 2003-2013.
3. Bailleul P, Bernier J, Milgen Jv, Sauvant D, Pomar C (2000) The utilization of prediction models to optimize farm animal production systems: the case of a growing pig model. Modelling nutrient utilization in farm animals 379-392.
4. Boorman K, Ellis G (1996) Maximum nutritional response to poor‐quality protein and amino acid utilisation. British poultry science 37:145-156.
5. Brickett K, Dahiya J, Classen H, Gomis S (2007) Influence of dietary nutrient density, feed form, and lighting on growth and meat yield of broiler chickens. Poultry Science 86(10): 2172-2181.
6. Carré B, Méda B (2015) Cross relationships between growth performance, growth composition and feed composition in broiler chickens, calculated from published data. Poultry science 94: 2191-2201.
7. Cobb-Vantress (2013) Cobb 500 broiler performance and nutrition supplement. USA.
8. Dozier WA, Kidd MT, Corzo A (2008) Dietary amino acid responses of broiler chickens. The Journal Applied Poultry Research 17: 157-167.
9. Golian A, Maurice DV (1992) Dietary poultry fat and gastrointestinal transit time of feed and fat utilization in broiler chickens. Poultry Science 71: 1357-1363.
10. Griffiths L, Leeson S, Summers J (1977) Influence of energy system and level of various fat sources on performance and carcass composition of broilers. Poultry Science 56: 1018-1026.
11. Havenstein G, Ferket P, Qureshi M (2003) Growth, livability, and feed conversion of 1957 versus 2001 broilers when fed representative 1957 and 2001 broiler diets. Poultry Science 82: 1500-1508.
12. Holsheimer J, Ruesink E (1993) Effect on performance, carcass composition, yield, and financial return of dietary energy and lysine levels in starter and finisher diets fed to broilers. Poultry Science 72: 806-815.
13. Jackson S, Summers JD, Leeson S (1982) Effect of dietary protein and energy on broiler carcass composition and efficiency of nutrient utilization. Poultry Science 61: 2224-2231.
14. Kamran Z, Sarwar M, Nisa M, Nadeem MA, Ahmad S, Mushtaq T, Ahmad T, Shahzad MA (2008) Effect of lowering dietary protein with constant energy to protein ratio on growth, body composition and nutrient utilization of broiler chicks. Asian-Australian Journal of Animal Science 21: 1629-1634.
15. Latshaw J and Moritz J (2009) The partitioning of metabolizable energy by broiler chickens. Poultry Science 88: 98-105.
16. Leeson S, Summers JD, Caston LJ (1996) Broiler response to energy or energy and protein dilution in the finisher diet. Poultry Science 75: 522-528.
17. Lesson S, Caston L, Summers JD (1996) Broiler response to diet energy. Poultry Science 75: 529-535.
18. Marcato SM, Sakomura NK, Munari DP, Fernandes JB, Kawauchi IM, Bonato MA (2008) Growth and body nutrient deposition of two broiler commercial genetic lines. Brazilian Journal of Poultry Science 10: 117-123.
19. Mirshekar R, Dastar B, Shabanpour B, Hassani S (2013) Effect of dietary nutrient density and vitamin premix withdrawal on performance and meat quality of broiler chickens. Journal of the Science of Food and Agriculture 93: 2979-2985.
20. Newcombe M, Summers JD (1985) Effect of increasing cellulose in diets fed as crumbles or mash on the food intake and weight gain of broiler and Leghorn Chicks. British Poultry Science 26: 35-42.
21. Nielsen BL (2004) Behavioural aspects of feeding constraints: Do broilers follow their gut feelings? . Applied Animal Behavior Science 86: 251-260.
22. Plavnik I, Wax E, Sklan D, Bartov I, Hurwitz S (1997) The response of broiler chickens and turkey poults to dietary energy supplied either by fat or carbohydrates. Poultry Science 76: 1000-1005.
23. Połtowicz K, Doktor J (2012) Effect of slaughter age on performance and meat quality of slow-growing broiler chickens. Annals of Animal Science 12: 621-631.
24. Priyankarage N, Rose S, Silva S, Pirgozliev V (2008) The efficiency of energy retention of broiler chickens and turkeys fed on diets with different lysine concentrations. British poultry science 49: 721-730.
25. Rama Rao S, Ravindran V, Raju M, Srilatha T, Panda A (2014) Effect of different concentrations of metabolisable energy and protein on performance of White Leghorn layers in a tropical climate. British poultry science 55: 532-539.
26. Robbins KR, Saxton AM, Southern LL (2006) Estimation of nutrient requirements using broken-line regression analysis. Journal of Animal Science 84: 155-165.
27. Romero LF, Zuidhof MJ, Renema RA, Naeima A, Robinson FE (2011) Effects of maternal energy efficiency on broiler chicken growth, feed conversion, residual feed intake, and residual maintenance metabolizable energy requirements. Poultry science 90: 2904-2912.
28. Sahraei M, Shariatmadari F (2007) Effect of different levels of diet dilution during finisher period on broiler chickens performance and carcass characteristics. International Journal of Poultry Science 6: 280-282.
29. Sakomura N, Longo F, Oviedo-Rondon E, Boa-Viagem C, Ferraudo A (2005) Modeling energy utilization and growth parameter description for broiler chickens. Poultry Science 84: 1363-1369.
30. SAS. 2003. User's guide: Statistics, Version 9.1. Vol. 2. S.A.S Institute Cary, NC.
31. Schmidt G (2008) The effect of broiler market age on performance parameters and economics. Brazilian Journal of Poultry Science 10: 223-225.
32. Scott T (2002) Evaluation of lighting programs, diet density, and short term use of mash as compared to crumbled starter to reduce incidence of sudden death syndrome in broiler chicks to 35 d of age. Canadian Journal of Animal Science 82: 375-383.
33. Skinner-Noble D, Teeter R (2003) Components of feed efficiency in broiler breeding stock: energetics, performance, carcass composition, metabolism, and body temperature. Poultry Science 82: 1080-1090.
34. Steel RGD, Torrie JH, Dickey JD (1997) Principles and Procedures of Statistics: A Biometrical Approach. 3 ed. New York, NY: McGraw-Hill Book Co.
35. Van der Werf J (2004) Is it useful to define residual feed intake as a trait in animal
breeding programs? Australian Journal of Experimental Agriculture 44: 405-409.
36. Wang B, Chien L, Roan S (2012) POMABROILER: A Computer Simulation Model to Evaluate the Optimal Market Age of Broilers. Journal of Animal and Veterinary Advances 11: 2493-2502.
37. Willems O, Miller S, Wood B (2013) Aspects of selection for feed efficiency in meat producing poultry. World's Poultry Science Journal 69: 77-88.
38. Zancanela V, Marcato S, Furlan A, Grieser D, Ton A, Batista E, Perine T, Del Vesco A, Pozza P (2015) Models for predicting energy requirements in meat quail. Livestock Science 171: 12-19.