نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی ارشد تغذیه دام، گروه علوم دامی، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران

2 دانشیار تغذیه دام، گروه علوم دامی، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران

3 استاد تغذیه نشخوارکنندگان، گروه علوم دامی، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران

چکیده

این پژوهش به‌منظور مقایسه تأثیر منابع مختلف روی بر جمعیت‌های میکروبی، آنزیم‌های هیدرولیتیک و فراورده‌های تخمیر برون‌تنی شکمبه گوسفند اجرا شد. پنج جیرۀ بدون مکمل روی (شاهد) یا حاوی سولفات روی، اکسید روی، نانواکسید روی و روی-متیونین ارزیابی شدند. آزمون‌های گاز 24 و 72 ساعته در قالب طرح کاملاً تصادفی انجام شد و جمعیت‌های میکروبی، آنزیم‌های هیدرولیتیک، متان، فعالیت آنتی‌اکسیدانی، هضم‌پذیری ماده آلی (OMD)، انرژی قابل سوخت‌وساز (ME)، سوبسترای تجزیه‌شده حقیقی (TDS)، توده میکروبی، ضریب تفکیک‌پذیری (PF) و اسیدهای چرب فرار (VFA) تعیین گردیدند. تعداد کل باکتری‌های پروتئولیتیک و فعالیت پروتئاز در اثر مصرف منابع آلی، معدنی و نانوذرات روی کاهش یافت (0/05>P). مصرف منابع متیونین، اکسید و سولفات روی موجب افزایش فعالیت آلفاآمیلاز شد (0/05>P). تعداد کل پروتوزوآ در انکوباسیون 24 ساعته در اثر منابع روی جیره‌ای روند کاهشی نشان داد. کل باکتری‌های سلولولیتیک، کربوکسی‌متیل سلولاز، میکروکریستالین سلولاز، فعالیت تجزیه‌کنندگی کاغذ صافی، ظرفیت آنتی‌اکسیدانی، توده میکروبی و PF بین تیمارها یکسان بود. مکمل‌های متیونین، اکسید و سولفات روی موجب افزایش OMD، ME، TDS و کل VFA شدند، درحالی‌که آمونیاک و نسبت استات:پروپیونات را کاهش دادند (0/05>P). تولید متان 24 ساعته نیز با مصرف مکمل‌های روی کاهش یافت (0/05>P). درمجموع، افزودن مکمل‌های سولفات، اکسید و متیونین-روی به جیره (30 میلی‌گرم روی در کیلوگرم ماده خشک) با هدف بهبود فعالیت آلفاآمیلاز و قابلیت هضم و کاهش فعالیت پروتئولیتیک، تجمع آمونیاک و متان قابل توصیه است اما تغذیه نانواکسید روی توصیه نمی‌شود. تحقیقات بیشتری در مورد اثر منابع روی بر میکروب‌ها و آنزیم‌های شکمبه در شرایط جیره‌ای متفاوت نیاز است.

کلیدواژه‌ها

عنوان مقاله [English]

Effect of different zinc sources on in vitro ruminal microbial populations, hydrolytic enzymes and fermentation products in sheep

نویسندگان [English]

  • Mostafa Akbari Alaei 1
  • Javad Rezaei 2
  • Yousef Rouzbehan 3

1 Former MSc Student in Animal Nutrition, Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran

2 Associate professor of animal nutrition, Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran

3 Professor of Ruminant Nutrition,, Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran

چکیده [English]

This research was conducted to compare the effect of different zinc sources on in vitro microbial populations, hydrolytic enzymes and ruminal fermentation products in sheep. Five diets without zinc supplement (control) or containing ZnSO4, ZnO, nano-ZnO and Zn-methionine were assessed. The 24 and 72-h gas tests were conducted in a completely randomized design where the microbial populations, hydrolytic enzymes, methane, antioxidant activity, organic matter digestibility (OMD), metabolizable energy (ME), truly degraded substrate (TDS), microbial biomass, partitioning factor (PF) and volatile fatty acids (VFA) were determined. Total proteolytic bacteria count and protease activity decreased due to the usage of organic, inorganic and nano-particle sources of zinc (P<0.05). The use of methionine, oxide and sulfate sources of zinc increased alpha-amylase activity (P<0.05). Total protozoa number in the 24-h incubation tended to decrease owing to dietary zinc supplements. Total cellulolytic bacteria, carboxymethyl-cellulase, microcrystalline-cellulase, filter paper-degrading activity, antioxidant capacity, microbial biomass and PF were the same among treatments. Zinc methionine, oxide and sulfate supplements increased OMD, ME, TDS and total VFA, whereas decreased ammonia and acetate:propionate ratio (P<0.05). Also, 24-h methane production decreased with the use of zinc supplements (P<0.05). Overall, the dietary addition of sulfate, oxide and methionine- sources of zinc is recommended with the aim of improving alpha-amylase activity and digestibility and reducing proteolytic activity, ammonia accumulation and methane, but feeding nano-ZnO is not recommended. More research is needed on the effect of zinc sources on rumen microorganisms and enzymes in different dietary conditions.

کلیدواژه‌ها [English]

  • Enzyme activity
  • In vitro fermentation
  • Microbial population
  • Zinc supplement
حسینی وردنجانی، سیده فروغ. (1396). تأثیر تغذیه اکسید روی، متیونین روی و نانو اکسید روی، برابر یا بیش‌تر از توصیه NRC، در دوره پیش و پس از زایش بر عملکرد میش و بره. پایان‌نامه کارشناسی ارشد علوم دامی، دانشگاه تربیت مدرس، تهران، ایران.
زابلی، خلیل و علی‌عربی، حسن (1392). اثر سطوح مختلف نانوذرات اکسید روی و اکسید روی بر برخی فراسنجه‌های شکمبه‌ای بزغاله‌های نر مرغوز به روش برون‌تنی و درون‌تنی. تحقیقات تولیدات دامی، 2(1)، 1-14.
 
References
Alijani, K., Rezaei, J., & Rouzbehan, Y. (2020). Effect of nano-ZnO, compared to ZnO and Zn-methionine, on performance, nutrient status, rumen fermentation, blood enzymes, ferric reducing antioxidant power and immunoglobulin G in sheep. Animal Feed Science and Technology, 267, 114532. doi:10.1016/j.anifeedsci.2020.114532
Alimohamady, R., Aliarabi, H., Bruckmaier, R. M., & Christensen, R. G. (2019). Effect of different sources of supplemental zinc on performance, nutrient digestibility, and antioxidant enzyme activities in lambs. Biological Trace Element Research, 189, 75-84. doi:10.1007/s12011-018-1448-1
Arelovich, H. M., Amela, M. I., Martínez, M. F., Bravo, R. D., & Torrea, M. B. (2014). Influence of different sources of zinc and protein supplementation on digestion and rumen fermentation parameters in sheep consuming low-quality hay. Small Ruminant Research, 121(2-3), 175-182. doi:10.1016/j.smallrumres.2014.08.005
Arelovich, H. M., Owens, F. N., Horn, G. W., & Vizcarra, J. A. (2000). Effects of supplemental zinc and manganese on ruminal fermentation, forage intake, and digestion by cattle fed prairie hay and urea. Journal of Animal Science, 78(11), 2972-2979. doi:10.2527/2000.78112972x
Benzie, I. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: the FRAP assay. Analytical Biochemistry, 239(1), 70-76. doi:10.1006/abio.1996.0292
Chen, J., Wang, W., & Wang, Z. (2011). Effect of nano-zinc oxide supplementation on rumen fermentation in vitro. Chinese Journal of Animal Nutrition, 23(8), 1415-1421.
Chen, M., Xi, Y., Zhang, L., Zeng, H., Li, Y., & Han, Z. (2019). Effects of zinc-bearing palygorskite on rumen fermentation in vitro. Asian-Australasian Journal of Animal Sciences, 32(1), 63-71. doi:10.5713%2Fajas.17.0920
Dehority, B. A. (2003). Rumen Microbiology, 1st ed. Nottingham (UK): Nottingham University Press, Thrumpton.
Eryavuz, A., & Dehority, B. A. (2009). Effects of supplemental zinc concentration on cellulose digestion and cellulolytic and total bacterial numbers in vitro. Animal Feed Science and Technology, 151(3-4), 175-183. doi:10.1016/j.anifeedsci.2009.01.008
Fievez, V., Babayemi, O. J., & Demeyer, D. (2005). Estimation of direct and indirect gas production in syringes: A tool to estimate short chain fatty acid production that requires minimal laboratory facilities. Animal Feed Science and Technology, 123, 197-210. doi:10.1016/j.anifeedsci.2005.05.001
Galyean, M. L. (2010). Laboratory Procedures in Animal Nutrition Research. Department of Animal and Food Sciences. Lubbock, TX, (USA): Texas Tech University.
Ghaffri Chanzanagh, E., Seifdavati, J., Gheshlagh, F. M. A., Benamar, H. A., & Sharifi, R. S. (2018). Effect of ZnO nanoparticles on in vitro gas production of some animal and plant protein sources. Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 24(1), 25-32. doi:10.9775/kvfd.2017.18187
Hosseini Vardanjani, S. F. (2017). Effect of pre- and post- partum feeding zinc oxide, zinc-methionine and nano-zinc oxide, equal or higher than NRC guideline, on ewe and lamb performance (MSc Thesis, Tarbiat Modares University, Tehran). (In Persian)
Karr, K. J., Dawson, K. A., & Mitchell Jr, G. E. (1991). Inhibitory effects of zinc on the growth and proteolytic activity of selected strains of ruminal bacteria. Beef Cattle Res. Rep., 337, 27 p.
Kumar, S. S. R. (2017). Green synthesis of nanoparticles using plant extracts and their effect on rumen fermentation in vitro (MSc Thesis, P. V. Narasimha Rao Telangana Veterinary University, Rajendranagar, Hyderabad, India).
Makkar, H. P. S. (2010). In vitro screening of feed resources for efficiency of microbial protein synthesis. In: P. E. Vercoe, H. P. S. Makkar, & A. C. Schlink (Eds.), In Vitro Screening of Plant Resources for Extra-nutritional Attributes in Ruminants: Nuclear and Related Methodologies (pp. 107-144). Dordrecht (the Netherlands): IAEA.
Menke, K. H., Raab, L., Salewski, A., Steingass, H., Fritz, D., & Schneider, W. (1979). The estimation of the digestibility and metabolisable energy content of ruminant feedstuffs from the gas production when they are incubated with rumen liquor. Journal of the Science of Food and Agriculture, 93, 217-222. doi:10.1017/S0021859600086305
Mohamed, M. Y., Ibrahim, K., Abd El Ghany, F. T. F., & Mahgoup, A. A. S. (2017). Impact of nano-zinc oxide supplementation on productive performance and some biochemical parameters of ewes and offspring. Egyptian Journal of Sheep and Goats Sciences, 12(3), 49-64. doi:10.21608/ejsgs.2017.26308
Raje, K., Ojha, S., Mishra, A., Munde, V. K., Rawat, C., & Chaudhary, S. K. (2018). Impact of supplementation of mineral nano particles on growth performance and health status of animals: a review. Journal of Entomology and Zoology Studies, 6(3), 1690-1694.
Shakweer, I. M. E., El-Nahas, H. M., & El-Mekass, A. A. M. (2006). Effect of supplemental zinc methionine concentrations on digestibility, feed efficiency and some ruminal and blood parameters and performance of Friesian calves. Journal of Agricultural Science (Mansoura University), 31(8), 5015-5023.
Suttle, N. F. (2022). Mineral Nutrition of Livestock, 5th ed., Cambridge (USA): CABI.
Swain, P. S., Rao, S. B. N., Rajendran, D., Dominic, G., & Selvaraju, S. (2016). Nano zinc, an alternative to conventional zinc as animal feed supplement: A review. Animal Nutrition, 2(3), 134-141. doi:10.1016/j.aninu.2016.06.003
Váradyová, Z., Mravčáková, D., Holodová, M., Grešáková, Ľ., Pisarčíková, J., Barszcz, M., ... & Čobanová, K. (2018). Modulation of ruminal and intestinal fermentation by medicinal plants and zinc from different sources. Journal of Animal Physiology and Animal Nutrition, 102(5), 1131-1145. doi:10.1111/jpn.12940
Vázquez-Armijo, J. F., Martínez-Tinajero, J. J., López, D., Salem, A. F. Z. M. S., & Rojo, R. (2011). In vitro gas production and dry matter degradability of diets consumed by goats with or without copper and zinc supplementation. Biological Trace Element Research, 144, 580-587. doi:10.1007/s12011-011-9113-y
Zaboli, K., & Aliarabi, H. (2013). Effect of different levels of zinc oxide nano particles and zinc oxide on some ruminal parameters by in vitro and in vivo methods. Animal Production Research, 2(1), 1-14. (In Persian)