نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه پرورش و مدیریت طیور- دانشکده کشاورزی - دانشگاه تربیت مدرس - تهران - ایران

2 گروه پرورش . مدیریت طیور، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران

چکیده

اثر افزودن گاواژ مری باکتریوفاژ و باکتری انتروکوکوس در چینه‌دان و هم‌چنین افزودن جیره­ای آنتی‌بیوتیک ویرجینیامایسین، داروی کاهنده چربی آتورواستاتین و پودر نمک­های صفراوی گاوی بر عملکرد تولیدی و قابلیت هضم مواد مغذی با استفاده از 240 قطعه مرغ تخمگذار های­لاین به‌مدت هشت هفته در قالب طرح کاملاً تصادفی بررسی شد. نتایج نشان داد که تیمار آتورواستاتین کم‌ترین مصرف خوراک، درصد تولید تخم­مرغ و توده تخم­مرغ و بالاترین ضریب تبدیل خوراک را داشت (0/05>P). پرندگان دریافت‌کننده آتورواستاتین، سطح کلسترول، تری­گلیسیرید، پروتئین کل و گلوبولین پایین­­تری در مقایسه با تیمارهای حاوی آنتی­بیوتیک و پودر نمک­های صفراوی  داشتند (0/05>P). کم‌ترین غلظت اوریک‌اسید در پرندگان شاهد و بالاترین درصد هماتوکریت در پرندگان دریافت‌کننده باکتریوفاژ و شاهد مشاهده شد 0/05>P). شمار کل باکتری­های هوازی، باکتری­های اسید لاکتیک، انتروکوکوس و کلی­فرم­ها در پرندگان دریافت‌کننده باکتریوفاژ کم‌تر از پرندگان دریافت‌کننده انتروکوکوس بود (0/05>P). اگرچه، قابلیت هضم پروتئین خام بین تیمارهای باکتریوفاژ و باکتری انتروکوکوس اختلاف معنی­داری نداشت، اما قابلیت هضم چربی خام و ماده خشک در پرندگان دریافت‌کننده باکتریوفاژ بیش‌تر از پرندگان دریافت‌کننده باکتری انتروکوکوس بود (0/05>P). براساس نتایج حاصل، گاواژ مری باکتریوفاژ پاد-انتروکوکوس بدون تأثیر بر عملکرد تولیدی، موجب کاهش جمعیت باکتری انتروکوکوس و بهبود قابلیت هضم ظاهری ماده خشک در مرغ­های تخمگذار می­شود.

کلیدواژه‌ها

عنوان مقاله [English]

Effect of esophageal gavage of anti-enterococcus bacteriophage on productive performance, ileal microbial population, and nutrient digestibility of laying hens

نویسندگان [English]

  • Somayeh Zeinali 1
  • Mohammad Amir Karimi Torshizi 2
  • Farid Shariatmadari 1

1 Poultry Science Department - Faculty of Agriculture- Tarbiat Modares University- Tehran-Iran

2 Poultry Science Department - Faculty of Agriculture- Tarbiat Modares University- Tehran-Iran

چکیده [English]

Introduction Bacteria of the intestinal tract may have a profound impact on lipids' digestion and utilization. The proposed mechanism for reduced lipids digestibility is the de-conjugation of bile salts, via bacterial bile salt hydrolase (BSH) enzyme activity. The activity of BSH is well recognized in some genera of lactic acid bacteria like Enterococci. Bacteriophages are recognized as bacteria-eating viruses, which are host specific in contrast to antibiotics. We find bacteriophages that lysis the laying hen's intestinal Enterococci. It is expected that oral administration of bacteriophage lessens the negative impact of Enterococci BSH activity on lipids digestion.
Materials and Methods A total of 240 high-line W-36 laying hens aged 50 weeks were tested in six treatments with five replications and eight pieces in each replication for eight weeks in a completely randomized design. Treatments include, 1) control (basal diet without additives), 2) basal diet + antibiotic (virginiamycin), 3) basal diet + lipid-lowering drug (atorvastatin), 4) basal diet + bile salt powder, 5) basal diet + oral gavage of Enterococcus bacteria, and 6) basal diet + oral gavage of bacteriophage against Enterococcus.
Results and Discussion The results showed that the group receiving the lipid-lowering drug (atorvastatin) had significantly the lowest percentage of egg production, the lowest egg mass, and the highest feed conversion rate (P<0.05). Enterococcus bacteria and atorvastatin had the same performance, although Enterococcus bacteria did not increase the feed conversion rate as much as the lipid- atorvastatin, it performed poorly compared to the bacteriophage. The use of phage in poultry improved performance. No significant effect among treatments was observed in albumin, glucose, uric acid, calcium, and phosphorus. The level of cholesterol, triglyceride, total protein, and globulin in the atorvastatin group was lower compared to the antibiotic and bile salt groups (P<0.05). Cholesterol and triglyceride levels were higher in the antibiotic, bacteriophage, and bile salt powder treatments than in the other treatments (P<0.05). The lowest concentration of uric acid was observed in the control group and the highest percentage of hematocrit was observed in the bacteriophage and control groups. The role of antibiotic and bile salt in the rest of the reports was the same as bacteriophage but regarding the increase of hematocrit in bacteriophage treatment, phages showed their superiority in this field (P<0.05). The total number of aerobic bacteria, lactic acid bacteria, enterococcus, and coliforms in the bacteriophage group was less than in the bacteria group (P<0.05). However, the digestibility of crude protein was not significantly different between bacteriophage and bacteria groups (P<0.05). The total population of aerobic bacteria was lower in antibiotic and bacteriophage treatments. This study demonstrated the ability to use bacteriophage to reduce the population of specific bacteria. The population of lactic acid bacteria was higher than other treatments in bacteria treatment. Bacteriophage had been more effective to reduce the population of Enterococcus bacteria than other treatments. A close competition between antibiotics and bacteriophage was observed. Regarding the reduction of the E.coli bacteria population, it showed the appropriate ability of bacteriophage to replace the antibiotics. The digestibility of ether extract and dry matter in the bacteriophage was higher than in the bacteria group. The dry matter digestibility in antibiotic and bacteriophage is similar, but bile salt powder was not similar to bacteriophage in this case, and the dry matter in bile salt powder was the lowest (P<0.05).
Conclusion Based on the results, oral bacteriophage could improve dry matter digestibility and reduce the Enterococcus bacteria population without a significant impact on production performance in laying hens.
 

کلیدواژه‌ها [English]

  • Bacteriophage
  • Blood biochemistry
  • Egg production
  • ؛ Enterococcus
  • ؛ Intestinal microbial ؛ population
Ahmadi, M., Karimi Torshizi M. A., & Rahimi, S. (2015). Isolation of lytic bacteriophage from poultry’s feces and evaluation of its efficiency to reduce Salmonella enteritidis in vitro and in vivo. The Iranian Journal of Microbiology, 9(3), 37-47. (In Persian).
Apajalahti, J., & Vienola K. (2016). Interaction between chicken intestinal microbiota and protein digestion. Animal Feed Science and Technology, 221, 323-330.
Association of Official Analytical Chemists. (1990). In: Helrich, K. (Ed.), Official Methods of Analysis of the AOAC, 15th ed. AOAC, Arlington, VA, USA.
El-Boushy, E., Abdalla, O., Risha, E., & EL-Nagar, A. (2013). Studies on dietary hypocholesterolemic agent in broilers. Suez Canal Veterinary Medical Journal, 18(1),13-26.
Elkin, R. G., & Rogler, J. C. (1990). Reduction of the cholesterol content of eggs by the oral administration of lovastatin to laying hens. Journal of Agricultural and Food Chemistry, 38(8), 1635-1641.
Elkin, R. G., Furumoto, E. J., & Thomas, C. R. (2003). Assessment of egg nutrient compositional changes and residue in eggs, tissues, and excreta following oral administration of atorvastatin to laying hens. Journal of Agricultural and Food Chemistry, 51(11), 3473-3481.
Elkin, R. G., Yan, Z., Zhong, Y., Donkin, S. S., Buhman, K. K., Story, J. A., Turek, J. J., Porter, Jr., R. E., Anderson, M., Homan, R., & Newton, R. S. (1999). Select 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors vary in their ability to reduce egg yolk cholesterol levels in laying hens through alteration of hepatic cholesterol biosynthesis and plasma VLDL composition. The Journal of Nutrition, 129(5), 1010-1019.
Engberg, R. M., Hedemann, M. S., Leser, T. D., & Jensen, B. B. (2000) Effect of zinc bacitracin and salinomycin on intestinal microflora and performance of broilers. Poultry Science, 79(9), 1311-1319.
Feighner, S. D., & Dashkevicz, M. P. (1987). Subtherapeutic levels of antibiotics in poultry feeds and their effects on weight gain, feed efficiency, and bacterial cholyltaurine hydrolase activity. Applied Environmental Microbiology, 53, 331-336.
Geng, W., Long, S. L., Chang, Y. J., Saxton, A. M., Joyce, S. A., & Lin, J. (2020). Evaluation of bile salt hydrolase inhibitor efficacy for modulating host bile profile and physiology using a chicken model system. Scientific Reports, 10(1), 1-20.
Golrokh, A. J., Bouyeh, M., Seidavi, A., van den Hoven, R., Laudadio, V., & Tufarelli, V. (2016). Effect of different dietary levels of atorvastatin and L-carnitine on performance, carcass characteristics and plasma constitutes of broiler chickens. The Journal of Poultry Science, 53(3), 201-207. (In Persian).
Grabowski, Ł., Węgrzyn, G., Węgrzyn, A., & Podlacha, M. (2022). Phage therapy vs. the use of antibiotics in the treatment of salmonella-infected chickens: comparison of effects on hematological parameters and selected biochemical markers. Antibiotics, 11(12), 1787.
Kim, J. H., Hong, S. T., Lee, H. S., & Kimt, H. J. (2004). Oral administration of pravastatin reduces egg cholesterol but not plasma cholesterol in laying hens. Poultry Science, 83(9),1539-1543.
Knarreborg, A., Engberg, RM., Jensen, SK., & Jensen, BB. (2002). Quantitative determination of bile salt hydrolase activity in bacteria isolated from the small intestine of chickens. Applied and Environmental Microbiology, 68(12), 6425-8.
Kumar, S., Tyagi, P. K., Prasad, Y., Shrivastav, A. K., Shrivastava, H. P., Mandal, A. B, Tyagi, P. K., Deo, C., & Singh, R. (2012). Effect of dietary addition of pharmacological drugs on the production performance and plasma lipid profile and egg cholesterol content of laying hens. Indian Journal of Poultry Science, 47(2), 158-163.
Moser, S. A., & Savage, D. C. (2001). Bile salt hydrolase activity and resistance to toxicity of conjugated bile salts are unrelated properties in lactobacilli. Applied Environmental Microbiology, 67, 3476-3480.
Noori Raygani, J., Karimi Torshizi, M. A., Rahimi, S., & Madadgar, O. (2015). Efficiency of bacteriophage in biocontrol of enterococcal colonization of quail. Animal Production, 17(2),199-209. (In Persian).
Panda, A. K., Rao, S. V. R., Raju, M. V., & Sharma, S. R. (2006). Dietary supplementation of Lactobacillus sporogenes on performance and serum biochemico-lipid profile of broiler chickens. The Journal of Poultry Science, 43(3), 235-240.
Pereira, D. I., McCartney, A. L., & Gibson, G. R. (2003). An in vitro study of the probiotic potential of a bile-salt-hydrolyzing Lactobacillus fermentum strain, and determination of its cholesterol-lowering properties. Applied and Environmental Microbiology, 69(8), 4743-52.
Royan, M. (2018). The use of enterococci as probiotics in poultry. Iranian Journal of Applied Animal Science, 8(4), 559-565.
Sarrami, Z., Sedghi, M., Mohammadi, I., Kim, W. K., & Mahdavi, A. H. (2022). Effects of bacteriophage supplement on the growth performance, microbial population, and PGC-1α and TLR4 gene expressions of broiler chickens. Scientific Reports, 12(1), 1-13.
Tavakolinasab, F., Khosravinia, H., & Masouri, B. (2020). Effects of milk thistle, artichoke and olive extracts in comparison with atorvastatin and gemfibrozil on liver function in broiler chicken. Poultry Science Journal, 8(1), 109-117.
Vosoogh Sharifi, O., Karimi Torshizi, M. A., Rahimi, S., Dalimi Asl, A., & Raei, H. (2022) Strain differences in effects of dietary supplementation with Aspergillus niger cultures in protein-reduced diets on performance, plasma biochemistry and meat lipid oxidation of broilers. Animal Production Science. 63(2), 142-151.
Zhang, Y., Ma, W., Zhang, Z., Liu, F., Wang, J., Yin, Y., & Wang, Z. (2019). Effects of Enterococcus faecalis on egg production, egg quality and caecal microbiota of hens during the late laying period. Archives of Animal Nutrition, 73(3), 208-221.
Zuberu, J., Saleh, M. I., Alhassan, A. W., Adamu, B. Y., Aliyu, M., & Iliya, B. T. (2017). Hepatoprotective effect of camel milk on poloxamer 407 induced hyperlipidaemic Wistar rats. Open Access Macedonian Journal of Medical Sciences, 5(7), 852-858.