نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم طیور، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران،

2 نویسنده مسئول، گروه علوم طیور، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران،

چکیده

هدف از این پژوهش بررسی اثرات چربی افزوده شده در مخلوط‌کن، پروتئین خام جیره و دمای حالت دهنده بر شاخص ماندگاری پلت، انرژی الکتریکی مصرفی هنگام تولید خوراک با استفاده از ابزارهای مدل‌سازی محاسباتی بود که از 192 نمونه خوراک جوجه‌های گوشتی با سطوح مختلف چربی افزوده شده در مخلوط‌کن (چهار سطح) و پروتئین خام (چهار سطح) در اجزای خوراک و دماهای مختلف حالت دهنده (سه سطح) برای تعیین شاخص ماندگاری پلت، شاخص تصحیح ‌شده ماندگاری پلت و انرژی الکتریکی مصرفی هنگام تولید خوراک استفاده شد. برای تحلیل این داده‌ها مدل‎های تابعیت خطی چندگانه و شبکه‌ی عصبی مصنوعی مورد استفاده قرار گرفت. هر دو مدل ذکر شده توانایی پیش‌بینی مقدار شاخص ماندگاری پلت، شاخص تصحیح ‌شده ماندگاری پلت و انرژی الکتریکی مصرفی هنگام تولید خوراک را داشتند؛ اما دقت پیش‌بینی مدل شبکه‌ی عصبی مصنوعی نسبت به مدل تابعیت خطی چندگانه برای هر سه خروجی بیشتر بود. با استفاده از مدل شبکه‌ی عصبی مصنوعی بهینه‌سازی انجام شد که در این محاسبات برای رسیدن به بیشترین میزان ممکن کیفیت فیزیکی پلت و کمترین میزان ممکن انرژی الکتریکی مصرفی مقدار پروتئین خام، 20-20/5 درصد و دمای حالت دهنده، 85 درجه سلسیوس پیش‌بینی شد، اما میزان چربی برای بیشترین مقدار کیفیت فیزیکی پلت، یک درصد و برای کمترین مقدار انرژی الکتریکی مصرفی هنگام تولید، چهار درصد پیش‌بینی شد. بر اساس نتایج حاصل، مدل شبکه‌ی عصبی مصنوعی می‌تواند در شرایط کاربردی در پیش‌بینی دقیق‌تر مصرف برق و کیفیت خوراک تولید شده به منظور دستیابی به وضعیت مطلوب در کارخانه‌های تولید خوراک کمک کند.

کلیدواژه‌ها

عنوان مقاله [English]

Modeling and optimization of the effect of broiler diet formulation and conditioning temperature on the physical quality of pellet and production efficiency of poultry feed factory

نویسندگان [English]

  • Mohaddeseh Esnaashari 1
  • Hamed Ahmadi 2
  • Farid Shariatmadari 1
  • Mostafa Lotfi 1

1 Department of Poultry Science, Tarbiat Modares University

2 Department of Poultry Science, Tarbiat Modares University

چکیده [English]

This study was conducted to investigate the effects of mixer added fat, crude protein and conditioning temperature on the pellet durability index, and electrical energy consumption during feed production using computational modeling tools. A total of 192 broiler feed samples with different levels of mixer added fat and crude protein in feed components and different conditioning temperatures to determine the pellet durability index, modified pellet durability index and electrical energy consumption during feed production were used. Multiple linear regression and artificial neural network were used to analyze data. Both models had the ability to predict the value of the pellet durability index, modified pellet durability index and the electrical energy consumption during feed production; but the prediction accuracy of the artificial neural network model was higher than that of the multiple linear regression model for all three outputs. Optimization was done using the artificial neural network model, and in these calculations, in order to achieve the highest possible level of pellet physical quality and the lowest possible level of electrical energy consumption, the crude protein amount was 20-20.5% and the conditioning temperature was predicted to be 85 C. However, the amount of fat was predicted to be 1% for the highest amount of pellet physical quality and 4% for the lowest amount of electrical energy consumption during production. In practical conditions, this model can help in more accurate prediction of electricity consumption and the quality of produced feed in order to achieve the optimal situation in feed production factories.

کلیدواژه‌ها [English]

  • Artificial neural network
  • Computational modeling
  • Electric energy consumed
  • Pellet physical quality
  • Production efficiency
  1. Abadi MHMG, Moravej H, Shivazad M, Torshizi MAK and Kim WK (2019) Effect of different types and levels of fat addition and pellet binders on physical pellet quality of broiler feeds. Poultry science, 98(10): 4745-4754.
  2. Abdollahi M, Ravindran V and Svihus B (2013) Pelleting of broiler diets: An overview with emphasis on pellet quality and nutritional value. Animal Feed Science and Technology, 179(1-4): 1-23.
  3. Abdollahi MR, Zaefarian F and Ravindran V (2019) Maximising the benefits of pelleting diets for modern broilers. Animal Production Science, 59(11): 2023-2028.
  4. Ahmadi H (2017) A mathematical function for the description of nutrient-response curve. Plos one, 12(11): e0187292.
  5. Ahmadi H and Golian A (2010) The integration of broiler chicken threonine responses data into neural network models. Poultry science, 89(11): 2535-41.
  6. Ahmadi H and Rodehutscord M (2017) Application of artificial neural network and support vector machines in predicting metabolizable energy in compound feeds for pigs. Frontiers in nutrition, 4 27.
  7. Ayoola OA (2020) Influence of the animal feed binders on optimal nutritional and physical qualities of the animal feed pellets and feed production capacity-A literature review. Norwegian University of Life Sciences, Ås.
  8. Buchanan N, Lilly K, Gehring C and Moritz J (2010) The effects of altering diet formulation and manufacturing technique on pellet quality. Journal of Applied Poultry Research, 19(2): 112-120.
  9. Buchanan N and Moritz J (2009) Main effects and interactions of varying formulation protein, fiber, and moisture on feed manufacture and pellet quality. Journal of Applied Poultry Research, 18(2): 274-283.
  10. Catalá-Gregori P, García V, Madrid J, Orengo J and Hernández F (2009) Inclusion of dried bakery product in high fat broiler diets: effect on pellet quality, performance, nutrient digestibility and organ weights. Asian-Australasian Journal of Animal Sciences, 22(5): 686-693.
  11. Cubes P Crumbles-Definitions and Methods for Determining Density, Durability and Moisture Content. ASAE Standards S, 269.
  12. Fahrenholz AC (2012) Evaluating factors affecting pellet durability and energy consumption in a pilot feed mill and comparing methods for evaluating pellet durability: Kansas State University.
  13. Glover B, Foltz K, Holásková I and Moritz J (2016) Effects of modest improvements in pellet quality and experiment pen size on broiler chicken performance. Journal of Applied Poultry Research, 25(1): 21-28.
  14. Gulati T, Chakrabarti M, Sing A, Duvuuri M and Banerjee R (2010) Usporedno ispitivanje metode odzivnih površina, umjetne neuralne mreže i genetskog algoritma radi optimiranja hidratacije zrna soje. Food Technology and Biotechnology, 48(1): 11-18.
  15. InstituteInc S (1982) SAS/STAT User’s Guide: SAS Institute Inc. Cary, North Carolina.
  16. LOAR II R and Corzo A (2011) Effects of feed formulation on feed manufacturing and pellet quality characteristics of poultry diets. World's Poultry Science Journal, 67(1): 19-28.
  17. Loar II R, Wamsley K, Evans A, Moritz J and Corzo A (2014) Effects of varying conditioning temperature and mixer-added fat on feed manufacturing efficiency, 28-to 42-day broiler performance, early skeletal effect, and true amino acid digestibility. Journal of Applied Poultry Research, 23(3): 444-455.
  18. Lou W and Nakai S (2001) Artificial neural network-based predictive model for bacterial growth in a simulated medium of modified-atmosphere-packed cooked meat products. Journal of Agricultural and Food Chemistry, 49(4): 1799-1804.
  19. Massuquetto A, Durau J, Schramm V, Netto MT, Krabbe E and Maiorka A (2018) Influence of feed form and conditioning time on pellet quality, performance and ileal nutrient digestibility in broilers. Journal of Applied Poultry Research, 27(1): 51-58.
  20. MATLAB V (2018) 9.0. 0.341360 (R2018b). Natick, Massachusetts: The MathWorks Inc.
  21. Netto MT, Massuquetto A, Krabbe E, Surek D, Oliveira S and Maiorka A (2019) Effect of conditioning temperature on pellet quality, diet digestibility, and broiler performance. Journal of Applied Poultry Research, 28(4): 963-973.
  22. Rueda M, Rubio A, Starkey C, Mussini F and Pacheco W (2022) Effect of conditioning temperature on pellet quality, performance, nutrient digestibility, and processing yield of broilers. Journal of Applied Poultry Research, 31(2): 100235.
  23. Tillman N, Jones M and Pacheco W (2020) Influence of feed ingredients, conditioning temperature, and a dacitic tuff breccia (AZOMITE) on pellet production rate and pellet quality. Journal of Applied Poultry Research, 29(1): 162-170.
  24. Zohair GA, Al-Maktari GA and Amer MM (2012) A comparative effect of mash and pellet feed on broiler performance and ascites at high altitude (field study). Global Veterinaria, 9(2): 154-159.