نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم دامی، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران. رایانامه: sina.azad@znu.ac.ir

2 استاد،گروه علوم دامی، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران.

3 گروه علوم دامی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان چهارمحال و بختیاری، سازمان تحقیقات، آموزش و ترویج کشاورزی، شهرکرد، ایران.

4 استادیار، نویسنده مسئول، گروه علوم دامی، دانشکده کشاورزی، دانشگاه شهرکرد، شهرکرد، ایران.

5 گروه علوم دامی، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران.

10.22059/jap.2022.337081.623669

چکیده

در مطالعه حاضر، اثر منبع و سطح مس جیره بر تولید و سلامت گاوهای شیری با استفاده از 105 رأس گاو هلشتاین چند شکم زایش آبستن از 21 روز قبل از زایش تا 15 روز پس از زایش در قالب طرح بلوک‌های کامل تصادفی با سه تیمار و 35 تکرار بررسی شد. تیمارهای آزمایشی شامل: 1- جیره حاوی مس در سطح توصیه NRC از منبع سولفات مس (NRC-S)، 2- جیره حاوی مس در سطح دو برابر توصیه NRC از منبع گلیسینات مس (2NRC-Gly) و 3- جیره حاوی مس در سطح دو برابر توصیه NRC از منبع سولفات مس (2NRC-S) بود. تولید شیر و ترکیبات آن تحت تأثیر تیمارهای آزمایشی قرار نگرفت، اما اثر متقابل تیمار در زمان نشان داد که در روزهای 60، 90 و 120 شیردهی، گاوهای تیمار 2NRC-Gly تولید شیر بالاتری نسبت به گاوهای NRC-S داشتند (0/05 < P) و گاوهای 2NRC-S در روز 90 و 120 شیردهی تولید شیر بالاتری نسبت به گاوهای NRC-S داشتند (0/05 < P). شمار سلول‌های بدنی در گاوهای تیمار 2NRC-Gly نسبت به گاوهای NRC-S پایین‌تر بود (0/05 > P). بروز ورم پستان تحت بالینی در روز 15 شیردهی در تیمار 2NRC-Gly در مقایسه با دو تیمار دیگر کمتر بود (0/05 = P). تفاوتی در تغییرات وزن بدن و امتیاز وضعیت بدنی بین تیمارها مشاهده نشد. فراسنجه‌های خونی و آنزیم‌های کبدی تحت تأثیر افزودن مس به شکل معدنی و آلی قرار نگرفتند، اما غلظت آلبومین سرم پس از زایش در گروه 2NRC-Gly نسبت به دو گروه دیگر افزایش یافت (0/05 > P). بر اساس نتایج حاصل، افزودن مس به‌ویژه از منبع گلیسینات مس در سطح دو برابر توصیه NRC منجر به افزایش سطح آلبومین سرم، کاهش شمار سلول‌های بدنی شیر و بروز ورم پستان تحت بالینی شد که می‌تواند نشان‌دهنده بهبود سلامت گاوهای دوره انتقال باشد.

کلیدواژه‌ها

عنوان مقاله [English]

The effect of source and level of copper in the diet on production and health of Holstein cows during transition period

نویسندگان [English]

  • Sina Azad 1
  • hamid Amanlou 2
  • Najme Eslamian Farsuni 3
  • Tahere Amirabadi Farahani 4
  • Mohammad hadi Khabbazan 5

1 M.Sc. student, Animal Sciences, Faculty of Agriculture, University of Zanjan, Zanjan, Iran

2 Professor, Animal Sciences, Faculty of Agriculture, University of Zanjan, Zanjan, Iran

3 Department of Animal Science, Agriculture and Natural Resources Research Center, Shahrekord, Iran

4 Assistant Professor, Animal Sciences, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran

5 Department of animal science, university of Zanjan, Zanjan, Iran.

چکیده [English]

In the current study, the effect of source and level of copper in the diet on production and health of dairy cows using 105 multiparous pregnant Holstein cows from -21 until +15 days relative to calving in randomized complete block design with 3 treatments and 35 replications were investigated. The experimental treatments include: 1) diet containing copper at the NRC recommended levels from copper sulfate source (NRC-S), 2) diet containing copper at twice the NRC recommended levels from copper glycinate source (2NRC-Gly) and 3) diet containing copper at twice the NRC recommended levels from copper sulfate source (2NRC-S). Milk yield and composition were not affected by experimental treatments, but treatment by time interaction showed that cows fed by 2NRC-Gly had more milk than NRC-S group (P<0.05) at 60, 90,120 DIM and cow in 2NRC-Gly produced more milk at 90 and 120 days in milk compared to NRC-S (P<0.05). The somatic cells count for 2NRC-Gly cows was lower compared to NRC-S cows (P 0.05). The incidence of subclinical mastitis at 15 DIM in 2NRC-Gly was lower compared to the other two treatments (P = 0.05). No difference in body weight and body condition score changes were observed across treatments. Blood metabolites and liver enzymes were not affected by adding different Cu sources, but serum albumin postpartum was increased in 2NRC-Gly group relative to the other two groups (P 0.05). Based on the results, adding copper especially by copper glycinate source at twice the NRC recommended levels led to an increase in the serum albumin concentration, a decrease in milk somatic cells count and lower incidence of subclinical mastitis, which could indicate an improvement in health of cows during transition period.

کلیدواژه‌ها [English]

  • Copper glycinate
  • mastitis
  • milk yield
  • somatic cells count
  • transition period
  1. AOAC (1990) Official methods of analysis. 15th ed. Association of official analytical chemists, Arlington, VA.
  2. Campbell MH and Miller JK (1998) Effect of supplemental dietary vitamin E and zinc on reproductive performance of dairy cows and heifers fed excess iron. Journal of Dairy Science, 81: 2693-99.
  3. Edmonson AJ, Lean IJ, Weaver LD, Farver T and G Webster (1989) A body condition scoring chart for Holstein dairy cows. Journal of Dairy Science, 72: 68-78.
  4. Engle TE and Spears GW (2000) Dietary copper effects on lipid metabolism, performance, and ruminal fermentation in finishing steers. Journal of Animal Science, 78: 2452-2458.
  5. Ganda EK, Bisinotto RS, Vasquez AK, Teixeira AGV, Machado VS, Foditsch C, Bicalho M, Lima FS, Stephens L and Gomes MS (2016) Effects of Injectable Trace Mineral Supplementation in Lactating Dairy Cows with Elevated Somatic Cell Counts. Journal of Dairy Science, 99: 7319-29.
  6. Goff JP (2018) Invited review: Mineral absorption mechanisms, mineral interactions that affect acid–base and antioxidant status, and diet considerations to improve mineral status. Journal of Dairy Science, 101: 2763-2813.
  7. Halliwell B and Gutteridge JNC (1999) Mechanism of Damage of Cellular Targets by Oxidative Stress: Lipid Peroxidation. Free radicals in biology and medicine, 284: 313.
  8. Harmon RJ (1994) Physiology of mastitis and factors affecting somatic cell counts. Journal of Dairy Science, 77: 2103-2112.
  9. Hogan J, Weiss W, Smith K, Todhunter D and Schoenberger D (1995) Effects of an Escherichia coli J5 vaccine on mild clinical coliform mastitis. Journal of Dairy Science, 78: 285-290.
  10. Kinal S, Korniewicz A, Slupczynska M, Bodarski R, Korniewicz D and Cermak B (2007) Effect of the application of bioplexes of zinc, copper and manganese on milk quality and composition of milk and colostrum and some indices of the blood metabolic profile of cows. Czech Journal of Animal Science, 52: 423.
  11. Machado VS, Oikonomou G, Lima SF, Bicalho MLS, Kacar C, Foditsch C, Felippe MJ, Gilbert RO and Bicalho RC (2014) The effect of injectable trace minerals (selenium, copper, zinc, and manganese) on peripheral blood leukocyte activity and serum superoxide dismutase activity of lactating Holstein cows. The Veterinary Journal, 200:299-304.
  12. Mion B, Van Winters B, King K, Spricigo JF, Ogilvie L, Guan L, DeVries TJ, McBride BW, LeBlanc SJ, Steele MA and Ribeiro ES (2022) Effects of replacing inorganic salts of trace minerals with organic trace minerals in pre-and postpartum diets on feeding behavior, rumen fermentation, and performance of dairy cows. Journal of Dairy Science, 105: 6693-6709.
  13. Nocek JE, Socha MT andTomlinson DJ (2006) The effect of trace mineral fortification level and source on performance of dairy cattle. Journal of Dairy Science, 89: 2679-93.
  14. NRC (2001) Nutrient Requirements for Dairy Cattle. 7th rev. ed. National Academy Press. Washington, DC, USA.
  15. Osorio JS, Trevisi E, Li C, Drackley JK, Socha MT and Loor JJ (2016) Supplementing Zn, Mn, and Cu from amino acid complexes and Co from cobalt glucoheptonate during the peripartal period benefits postpartal cow performance and blood neutrophil function. Journal of Dairy Science, 99: 1868-1883.
  16. Overton TR and Yasui T (2014) Practical applications of trace minerals for dairy cattle. Journal of Animal Science, 92: 416-426.
  17. Park AF, Shirley JE, Titgemeyer EC, Meyer MJ, VanBaale MJ and VandeHaar MJ (2002) Effect of protein level in prepartum diets on metabolism and performance of dairy cows. Journal of Dairy Science, 85: 1815-1828.
  18. Pedernera M, Celi P, García SC, Salvin HE, Barchia I and Fulkerson WJ (2010) Effect of diet, energy balance and milk production on oxidative stress in early-lactating dairy cows grazing pasture. The Veterinary Journal, 186: 352-357.
  19. Rabiee AR, Lean IJ, Stevenson MA and Socha MT (2010) Effects of feeding organic trace minerals on milk production and reproductive performance in lactating dairy cows: A meta-analysis. Journal of Dairy Science 93: 4239-4251.
  20. Scaletti RW and Harmon RJ (2012) Effect of Dietary Copper Source on Response to Coliform Mastitis in Dairy Cows. Journal of Dairy Science, 95: 62-654.
  21. Scaletti RW, Trammell DS, Smith BA and Harmon RJ (2003) Role of dietary copper in enhancing resistance to Escherichia coli mastitis. Journal of Dairy Science, 86: 1240-1249.
  22. Spears JW and Weiss WP (2008) Role of antioxidants and trace elements in health and immunity of transition dairy cows. The Veterinary Journal, 176: 70-76.
  23. Spears JW (2003) Trace mineral bioavailability in ruminants. The Journal of Nutrition, 133: 1506S-1509S.
  24. Uchida K, Mandebvu P, Ballard CS, Sniffen CJ and Carter MP (2001) Effect of feeding a combination of zinc, manganese and copper amino acid complexes, and cobalt glucoheptonate on performance of early lactation high producing dairy cows. Animal Feed Science and Technology, 93: 193-203.
  25. Underwood Ej and Suttle NF (1999) The mineral nutrition of livestock. 3rd Edition. CABI publishing, New York, pp: 283-342.