نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد، گروه علوم دامی، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران

2 دانشیار گروه علوم دامی، دانشکده کشاورزی، گروه بیوانفورماتیک، پژوهشکده زیست فناوری کشاورزی، دانشگاه زابل، زابل، ایران

3 دانشیار گروه علوم دامی، پردیس ابوریحان، دانشکده کشاورزی، پاکدشت، تهران، ایران

4 استادیار پژوهشکده دامهای خاص، تخصص: ژنتیک و اصلاح نژاد دام/ ژنتیک کمی، شبیه-سازی برنامه‌های اصلاح نژادی، اصلاح نژاد

5 دانشیار گروه کلینیکال پاتولوژی، دانشکده دامپزشکی، دانشگاه زابل، زابل، ایران

چکیده

هدف از این پژوهش، بررسی پاسخ ایمنی همورال علیه گلبول قرمز گوسفند (SRBC) و ویروس بیماری نیوکاسل (NDV) در دو جنس ‌نر و ماده از دو سویه وحشی و خالدار ایتالیایی بلدرچین بود. برای مقایسه فنوتیپی دو جنس از مدل واکاوی یک طرفه و برای واکاوی ژنتیکی یک مدل دام ساده با فرض وجود تفاوت مولفه‌های واریانس بین دو جنس از بسته نرم‌افزاری MCMCglmm نرم افزار R استفاده شد. مقایسه فنوتیپی در دو جنس‌ نر و ماده در هیچ یک از سویه‌ها تفاوت معنی‌داری نشان نداد. در هر دو سویه، وراثت‌پذیری پاسخ‌های ایمنی همورال در نرها بالاتر از ماده‌ها برآورد شد. در سویه وحشی برآورد وراثت‌پذیری IgT در نرها (187/0) و IgY در ماده‌ها (177/0) بالاتر از سایر پاسخ‌های علیه SRBC بود. بالاترین وراثت‌پذیری مربوط به پاسخ ایمنی علیه NDV بود، به‌طوری که در جنس نر و ماده سویه وحشی به ترتیب 214/0 و 268/0 برآورد شد. بر اساس نتایج حاصل، انتخاب ژنتیکی برای پاسخ سیستم ایمنی علیه نیوکاسل موجب بهبود عملکرد سیستم ایمنی می‌شود. با توجه به برآورد بالاتر وراثت‌پذیری پاسخ‌های ایمنی در نرها، انتخاب ژنتیکی این صفات بویژه علیه NDV در نرها موجب پیشرفت ژنتیکی بیشتری می‌شود.

کلیدواژه‌ها

عنوان مقاله [English]

Genetic and phenotypic analysis of sexual dimorphism of the humoral immune response in wild and speckled Italian quail strains

نویسندگان [English]

  • Hamideh Nouri Sadegh 1
  • Ali Maghsoudi 2
  • Mohammad Rokouei 3
  • Hadi Faraju-Arough 4
  • Mehdi Jahantigh 5

1 Former MSc student , Department of Animal Science, Faculty of Agriculture, University of Zabol, Zabol, Iran

2 Associate Professor, Department of Animal Science, Faculty of Agriculture, University of Zabol, Zabol, Iran

3 Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran

4 Assistant Professor, Research Center of Special Domestic Animals, University of Zabol, Zabol, Iran

5 Associate Professor, Clinical Pathplogy, Faculty of Vatarinary, University of Zabol, Zabol, Iran

چکیده [English]

In the current research, immune system responses against sheep red blood cells (SRBC) and Newcastle disease virus (NDV) in two sexes of both wild and Italian speckled quails were investigated. To compare phenotypic differences of two sexes for humoral immune responses a one-way analysis was applied, and a simple animal model using the MCMCglmm package of R software was used for genetic analysis, assuming variance components between the two sexes are different. Phenotypic comparison between males and females did not show a significant difference in any of the strains. In both strains, heritability of humoral immunity in males was higher than females. Results showed, in wild strain, heritability of IgT in males (0.187), and IgY in females (0.177) were higher than other estimates. The highest heritability was related to the NDV, which was estimated to be 0.214 and 0.268 in males and females, respectively. Therefore, genetic selection for IgN can be expected to improve the performance of the birds’ humoral immune system. Likewise, according to the higher estimates of immune responses in males, genetic selection of humoral immune responses for IgN, leads to higher genetic progression.

کلیدواژه‌ها [English]

  • Antigen
  • Genetic parameters
  • Heritability
  • Immune response
  • Newcastle
  1. Ebrahimi K, Dashab GR, Faraji-Arough H, Maghsoudi A and Rokouei M (2019). Genome scan of Japanese quail chromosome 5 for detecting QTLs of growth traits. Animal Production Research, 8(3): 87-95. (in Persian).
  2. Faraji-Arough H, Rokouei M and Maghsoudi A (2019). Examination the strain and sex effect on blood serum biochemical parameters and growth traits of quail. Animal Sciences Journal, 32(123): 31-46. (in Persian).
  3. Khanegir R, Rokouei M, Faraji-Arough H, Maghsoudi A and Dashab GR (2020). Mapping of Quantitative Trait Loci for Immunity Traits by Microsatellite Markers on chromosome 5 in Japanese Quail. Research on Animal Production, 11(27): 116-125. (in Persian).
  4. Mahmoudi Zarandi M, Rokouei M, Vafaei Valleh M and Maghsoudi A (2020). Estimation of genetic parameters for body weight gain and feed efficiency traits in Japanese quail. Animal Production, 22(1): 9-22. (in Persian).
  5. Jahan M, Maghsoudi A, Rokouei M and Faraji-Arough H (2020). Prediction and optimization of slaughter weight in meat-type quails using artificial neural network modeling. Poultry Science, 99: 1363-1368.
  6. Mohammadi-Tighsiah A, Maghsoudi A, Bagherzadeh-Kasmani F, Rokouei M and Faraji-Arough H. (2020) Estimates of genetic parameters for body weights at late growth period and humoral ‎immunity in Japanese quail. Iranian Journal of Animal Science, 51(1): 17-25. (in Persian).
  7. Mohammadi-Tighsiah A, Maghsoudi A, Bagherzadeh-Kasmani F, Rokouei Mand Faraji-Arough H (2018) Bayesian analysis of genetic parameters for early growth traits and humoral immune responses in Japanese quail. Livestock Science, 2018(216): 197-202.
  8. Maghsoudi A, Vaziri E, Feizabadi M and Mehri M (2020) Fifty years of sheep red blood cells to monitor humoral immunity in poultry: a scientometric evaluation. Poultry Sceince, 99(10): 4758-4768.
  9. Cook IF (2008) Sexual dimorphism of humoral immunity with human vaccines. Vaccine, 26(29-30): 3551-5.
  10. Huff GR, Huff WE, Balog JM and Rath NC (1999) Sex differences in the resistance of turkeys to Escherichia coli challenge after immunosuppression with Dexamethasone. Poultry Science, 78: 38-44.
  11. Maghsoudi A, Vaez Torshizi R, Masoudi AA and Karimi Torshizi MA (2013) Sexual dimorphism in cellular and humoral immune responses in two strains of commercial Iranian Arian vs Western Azarbaijan native fowls. Iranian Journal of Animal Science, 44(4): 367-374. (in Persian).
  12. Maghsoudi A, Vaez Torshizi R, Masoudi AA, Karimi Torshizi MA and Mohammad Hasan Z (2015) Comparison of humoral immune response and plasma protein concentrations in Western Azerbaijan native and Arian high-productive fowls. Animal Sciences Journal, 28(107): 169-182. (in Persian).
  13. Martyka R, Rutkowska J and Cichon M (2011) Sex-specific effects of maternal immunization on yolk antibody transfer and offspring performance in zebra finches. Biology Letter, 7(1): 50-3.
  14. Numata M, Kondo T, Nambo Y, Yoshikawa Y, Watanabe K and Orino K (2013) Change of antibody levels to ferritin in the sera of foals after birth: possible passive transfer of maternal anti-ferritin autoantibody via colostrum and age-related anti-ferritin autoantibody production. Animal Science Journal, 84(12): 782-9.
  15. Tavaniello S, Maiorano G, Siwek M, Knaga S, Witkowski A, Di Memmo D and Bednarczyk M (2014) Growth performance, meat quality traits, and genetic mapping of quantitative trait loci in 3 generations of Japanese quail populations (Coturnix japonica). Poultry Science, 93(8): 2129-40.
  16. Shokoohmand M, Emam Jomeh Kashan N and Emami Maybody MA (2007) Estimation of heritability and genetic correlations of body weight in different age for three strains of japanese quail. International Journal of Agriculture and Biology, 9(6): 945-947.
  17. Zhang W, Aggrey SE, Pesti GM, Edwards HM Jr and Bakalli RI (2003) Genetics of phytate phosphorus bioavailability: heritability and genetic correlations with growth and feed utilization traits in a randombred chicken population. Poultry Science, 82(7): 1075-9.

 

 

 

 

 

 

  1. Minvielle F, Hirigoyen E and Boulay M (1999) Associated effects of the roux plumage color mutation on growth, carcass traits, egg production, and reproduction of Japanese quail. Poultry Science, 78(11): 1479-84.
  2. Smith BJ (2007) Boa: An R package for MCMC output convergence assessment and posterior inference. Journal of Statistical Software, 21(11): 1-37.
  3. Hadfield JD (2010) MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. Journal of Statistical Software, 33(2): 1-22.
  4. Saino N, Ferrari RP, Martinelli R, Romano M, Rubolini D and Moller AP (2002) Early maternal effects mediated by immunity depend on sexual ornamentation of the male partner. Procssding of the Biological Science, 269(1495): 1005-9.
  5. Pap PL, Czirják GÁ, Vágási CI, Barta Z and Hasselquist D (2010) Sexual dimorphism in immune function changes during the annual cycle in house sparrows. Naturwissenschaften, 97: 891-901.
  6. Abou-Kassem DE, El-Kholy MS, Alagawany M, Laudadio V and Tufarelli V (2019) Age and sex-related differences in performance, carcass traits, hemato-biochemical parameters, and meat quality in Japanese quails. Poultry Science, 98(4): 1684-1691.