نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار،گروه علوم دامی، دانشکده کشاورزی و محیط زیست، دانشگاه اراک

2 دانشیار، گروه علوم دامی، دانشکده کشاورزی و محیط زیست،دانشگاه اراک،

3 دانشیار، گروه علوم دامی، دانشکده کشاورزی و محیط زیست، دانشگاه اراک

4 استادیار، گروه علوم دام و طیور، پردیس ابوریحان، دانشگاه تهران، پاکدشت، ایران.

چکیده

درک کنترل ژنتیکی خلق و خوی به عنوان یک صفت پیچیده و دارای همبستگی با صفات اقتصادی یکی از اهداف اصلاح نژادی در صنعت گاو گوشتی است. هدف پژوهش حاضر، مطالعه پویش کل ژنوم بر مبنای تجزیه و تحلیل غنی‌سازی مجموعه ژنی جهت شناسایی جایگاه‌های ژنی مؤثر بر صفات مرتبط با خلق و خوی گاو نژاد براهمن بود. بدین منظور از اطلاعات ژنوتیپی 1370 رأس گاو براهمن و رکوردهای فنوتیپی شامل سرعت خروج، امتیاز پن و امتیاز خلق و خوی استفاده شد. ارزیابی پویش کامل ژنوم با PLINK نسخه 1/90 انجام شد. تجزیه و تحلیل غنی‌سازی مجموعه‌های ژنی بوسیله بسته نرم‌افزاری goseq برنامه R با هدف شناسایی مسیرهای زیستی ژن‌های نزدیک در مناطق انتخابی کاندیدا انجام شد. در نهایت تجزیه و تحلیل بیوانفورماتیکی از پایگاه‌های برخط GO، Metacyc، KEGG، Reactome و Panther استفاده شد. با تجزیه و تحلیل غنی‌سازی مجموعه‌های ژنی، مسیرهای بیوشیمیایی و (ژن‌های کاندیدای) neurotransmitter secretion (NRXN3 و CACNG3)،‌Cycle Dopamine Neurotransmitter Release (PPFIA2)، regulation of neuron projection development (GRID2)، neuron projection (SLC8A1 و KCNQ2)، Axonal growth inhibition (RTN4R)، Neurotrophin signaling pathway (MAP2K2، MAP3K5 و PSEN1) و Focal adhesion (TLN2) مرتبط با سرعت خروج شناسایی شدند. ژن‌های کاندیدا شناسایی شده نقش مهمی در تفرق و تمایز سیناپس‌ها، انتقال دهنده‌های عصبی، بیماری‌های عصبی و اختلال روانی، استرس‌های اکسیداتیو و محیطی، گیرنده‌های هورمونی و هموستازی گلوکز داشتند. با توجه به تأیید مناطق قبلی پویش ژنومی و شناسایی مناطق ژنومی جدید، استفاده از یافته‌های این پژوهش می‌تواند در انتخاب ژنتیکی حیوانات با تولید بالاتر از طریق دام‌های آرام مفید باشد.

کلیدواژه‌ها

عنوان مقاله [English]

Genome-wide association study by gene set enrichment analysis to identify genes and pathways associated with temperament in Brahman cattle

نویسندگان [English]

  • Hossein Mohammadi 1
  • Amir Hossein khaltabadi farahani 2
  • Mhammad hossein Moradi 3
  • Abouzar Najafi 4

1 Department of Animal Sciences, Faculty of Agriculture and Environmental Sciences, University of Arak

2 University of arak

3 Arak university

4 Tehran University

چکیده [English]

Understanding the genetic control of temperament as a complex trait and correlated with economic traits is one of the breeding goals in beef
cattle industry. The aim of the current study was genome wide association studies (GWAS) based on Gene set enrichment analysis for
detecting the loci associated with temperament traits in Brahman cattle breed. Therefore, 1370 Brahman cattle and phenotype records
associated with temperament traits including Exit velocity, Pen Score, and Temperament Score were used. The evaluation of genome-wide
association was carried out using PLINK package 1.90. The gene enrichment analysis was performed by the goseq R package for identifying
biological pathways of nearby genes in selected candidate regions and finally, GO, Metacyc, KEEG, Reactome and panther databases were
applied for bioinformatics analysis. By Gene set enrichment analysis, the biological pathways and candidate genes of neurotransmitter
secretion (NRXN3 and CACNG3), Dopamine Neurotransmitter Release Cycle (PPFIA2), regulation of neuron projection development
(GRID2), neuron projection (SLC8A1 and KCNQ2), Axonal growth inhibition (RTN4R), Neurotrophin signaling pathway (MAP2K2,
MAP3K5 and PSEN1) and Focal adhesion (TLN2) were identified. The detected candidate genes played an important role in differentiation
of synapse, neurotransmitters, neurological diseases and disorders, oxidative and environmental stresses, hormone receptors and glucose
homeostasis. Considering the confirmation of the previous region of genome wide association and the identification of new genomic regions,
the findings of this study can be useful in the genetic selection of higher production cattle through calm animals.

کلیدواژه‌ها [English]

  • Gene set enrichment analysis
  • genome scan
  • Cattle
  • temperament
  • Biological pathways
1. Alvarenga AB, Oliveira HR, Chen SY, Miller SP,
Marchant-Forde JN, Grigoletto L and Brito LF
(2021) A Systematic Review of Genomic Regions
and Candidate Genes Underlying Behavioral Traits
in Farmed Mammals and Their Link with Human
Disorders. Animals (Basel), 11(3): 715.
2. Azizpour N, Khaltabadi Farahani AH, Moradi MH and
Mohammadi H (2020) Genome-wide association study
based on Gene-set enrichment analysis associated with
milk yield in Holstein cattle. Animal Science
Researches, 30(1): 79-92. (In Persian)3. Borsotto M, Cavarec L, Bouillot M, Romey G,
Macciardi F, Delaye A, Nasroune M, Bastucci M,
Sambucy JL, Luan JJ, Charpagne A, Jouët V, Léger R,
Lazdunski M, Cohen D and Chumakov I (2007) PP2ABgamma
subunit and KCNQ2 K+ channels in bipolar
disorder. The Pharmacogenomics Journal, (2): 123-32.
4. Bouwman AC, Daetwyler HD, Chamberlain AJ, Ponce
CH, Sargolzaei M and Schenkel FS (2018) Metaanalysis
of genome-wide association studies for cattle
stature identifies common genes that regulate body size
in mammals. Nature Genetics, 50: 362.
5. Burdick NC, Agado B, White JC, Matheney KJ,
Neuendorff DA and Riley DG (2011) Technical
note: Evolution of exit velocity in suckling Brahman
calves. Journal of Animal Science, 89: 233-236.
6. Carvalheiro R, Costilla R, Neves HHR,
Albuquerque LG, Moore S and Hayes BJ (2019)
Unraveling genetic sensitivity of beef cattle to
environmental variation under tropical conditions.
Genetic Selection Evaluation, 51(1): 29.
7. Chen ZY, Zhang WW, Gan JK and Kong LN (2010)
Genetic effect of an A/G polymorphism in the
HSP70 gene on thermotolerance in chicken. Genet.
Mol. Res. 15(2): gmr8271.
8. Dos Santos FC, Peixoto MG, Fonseca PA, Pires
MF, Ventura RV, Rosse ID, Bruneli FA, Machado
MA and Carvalho MR (2017) Identification of
Candidate Genes for Reactivity in Guzerat (Bos
indicus) Cattle: A Genome-Wide Association Study.
PLoS One, 12(1): e0169163.
9. Friedrich J, Brand B and Schwerin M (2015)
Genetics of cattle temperament and its impact on
livestock production and breeding–A review.
Archives Animal Breeding, 58: 13-21.
10. Hsu R, Woodroffe A, Lai WS, Cook MN, Mukai J,
Dunning JP, Swanson DJ, Roos JL, Abecasis GR,
Karayiorgou M and Gogos JA (2007) Nogo
Receptor 1 (RTN4R) as a candidate gene for
schizophrenia: analysis using human and mouse
genetic approaches. PLoS One, 2(11): e1234.
11. Harkin LF, Lindsay SJ, Xu Y, Alzu'bi A, Ferrara A,
Gullon EA, James OG and Clowry GJ (2019).
Neurexins 1-3 Each Have a Distinct Pattern of
Expression in the Early Developing Human Cerebral
Cortex. Cerebral Cortex Journal, 27(1): 216-232.
12. Kalkan Z, Durasi İM, Sezerman U and Atasever-
Arslan B (2016) Potential of GRID2 receptor gene
for preventing TNF-induced neurodegeneration in
autism. Neuroscience Letters, 620: 62-9.
13. Kim ES, Elbeltagy AR, Aboul-Naga AM,
Rischkowsky B, Sayre B, Mwacharo JM and
Rothschild MF (2016) Multiple genomic signatures
of selection in goats and sheep indigenous to a hot
arid environment. Heredity (Edinb), 116(3): 255-64.
14. Kumar S, Chowdhury S, Razdan A, Kumari D,
Purty RS, Ram H, Kumar P, Nayak P and Shukla
SD (2021) Downregulation of Candidate Gene
Expression and Neuroprotection by Piperine in
Streptozotocin-Induced Hyperglycemia and
Memory Impairment in Rats. Frontiers in
Pharmacology, 11: 595471.
15. León CD, Manrique C, Martínez R and Rocha JF
(2019) Genomic association study for adaptability
traits in four Colombian cattle breeds. Genetics and
Molecular Research, 18(3): gmr18373.
16. Mota LFM, Lopes FB, Fernandes Júnior GA, Rosa
GJM, Magalhães AFB, Carvalheiro R and
Albuquerque LG (2020) Genome-wide scan
highlights the role of candidate genes on phenotypic
plasticity for age at first calving in Nellore heifers.
Scientific Reports, 10(1): 6481.
17. Mohammadi H and Sadeghi M (2010) Estimation of
Genetic Parameters for Growth and Reproduction
Traits and Genetic Trends of Growth Traits in Zel
Sheep Breed under Rural Production System.
Iranian Journal of Animal Science, 41(3): 231-241.
(In Persian)
18. Paredes-Sánchez FA, Sifuentes-Rincón AM, Casas
E, Arellano-Vera W, Parra-Bracamonte GM, Riley
DG, Welsh TH and Randel RD (2020) Novel genes
involved in the genetic architecture of temperament
in Brahman cattle. PLoS One, 15(8): e0237825.
19. Seabury CM, Oldeschulte DL, Saatchi M, Beever
JE, Decker JE, Halley YA, Bhattarai EK, Molaei M,
Freetly HC, Hansen SL, Yampara-Iquise H, Johnson
KA, Kerley MS, Kim J, Loy DD, Marques E,
Neibergs HL, Schnabel RD, Shike DW, Spangler
ML, Weaber RL, Garrick DJ and Taylor JF (2017)
Genome-wide association study for feed efficiency
and growth traits in U.S. beef cattle. BMC
Genomics, 18(1): 386-396.
20. Sevane N, Martínez R and Bruford MW (2019)
Genome-wide differential DNA methylation in
tropically adapted Creole cattle and their Iberian
ancestors. Animal Genetics, 50(1): 15-26.
21. Shen J, Chen Q and Zhang F (2020) Genome-wide
Association Studies Identify Quantitative Trait Loci
Affecting Cattle Temperament. Research Square, rs-
107748/v1.
22. Shen Q, Qu K, Ma Z, Zhan J, Zhang F, Shen J, Ning
Q, Jia P, Zhang J, Chen N, Chen H, Huang B and
Lei C (2020) Genome-Wide Association Study
Identifies Genomic Loci Associated With
Neurotransmitter Concentration in Cattle. Frontiers
in Genetics, 11: 139.
23. Sun CH, Southard C, Witonsky DB and Kittler R
(2010) Allele-Specific Down-Regulation of RPTOR
Expression Induced by Retinoids Contributes to
Climate Adaptations. PLoS one Genetics, 6: e1001178.
24. Valente TS, Baldi F, SantAnna AC, Albuquerque
LG and Paranhos da Costa MJ (2016) Genome-
Wide Association Study between Single Nucleotide
Polymorphisms and Flight Speed in Nellore Cattle.
PLoS One, 11(6): e0156956.