نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد، گروه علوم دامی، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران

2 دانشیار، گروه علوم دامی و بیوانفورماتیک، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران ; دانشیار، گروه علوم دام و طیور، پردیس ابوریحان،

3 استادیار پژوهشکده دام های خاص، دانشگاه زابل

4 دانشیار،عضو هیئت علمی گروه علوم دامی، دانشکده کشاورزی؛ گروه بیوانفورماتیک؛ پژوهشکده زیست فناوری کشاورزی، دانشگاه زابل. تخصص: ژنتیک و اصلاح

5 استادیار، مرکز تحقیقات کشاورزی و منابع طبیعی سیستان، زابل، ایران

چکیده

هدف از این پژوهش، برازش مدل‌های غیرخطّی مختلف برای توصیف منحنی رشد و انتخاب مناسب‌ترین مدل توصیف‌کننده منحنی رشد برای گوساله‌های گاو سیستانی بود. از رکوردهای وزن بدن 241 گوساله (118 رأس نر و 123 رأس ماده) که توسّط ایستگاه تحقیقات گاو سیستانی زهک بین سال‌های 1389 تا 1396 جمع‌آوری شده بود، استفاده شد. چهار مدل غیرخطّی (گمپرتز، لجستیک، ریچاردز، و ویبول) بر روری رکوردهای وزن بدن برازش و مناسب‌ترین مدل توسّط معیار-های برازش نیکویی (جذر میانگین مربعات خطا، معیار اطلاعات بیزی، معیار اطلاعات آکائیک و ضریب تعیین تصحیح شده) مورد ارزیابی قرار گرفت. براساس معیار-های برازش نکویی، مدل ریچاردز مناسب‌ترین تابع برای توصیف منحنی رشد در گوساله‌های نر و ماده بود. اثر جنس بر روی فراسنجه‌های منحنی‌ها در بسیاری از توابع معنی‌دار بود (0/05>P). مدل‌های لجستیک و ریچاردز به ترتیب بالاترین و پایین‌ترین مقدار فراسنجه مرتبط با وزن ابتدایی را داشتند. گوساله‌های نر در سن و وزن بالاتری نسبت به گوساله‌های ماده به نقطه عطف رسیدند. با توجّه به نتایج حاصل برای مدیریّت بهتر تغذیه‌ای و انتخاب برای رشد سریع با صحّت بالا، می‌توان از مدل مناسب جهت بررسی الگوی رشد این نژاد استفاده نمود.

کلیدواژه‌ها

عنوان مقاله [English]

Comparison of some non-linear mathematical models to describe the growth curve of Sistani calves

نویسندگان [English]

  • Noorolahe SHahroodi 1
  • Mohammad Rokouei 2
  • Hadi Faraji- Arough 3
  • Ali Maghsoudi 4
  • Morteza Kykha Saber 5

1 Former M.Sc. Student, Department of Animal Science, Faculty of Agriculture, University of Zabol, Zabol, Iran

2 Associate Professor, Department of Animal Science and Bioinformatics, Agriculture Faculty, University of Zabol, Zabol, Iran. ;Associate Professor, Department of Animal and Poultry Science, College of Aburaihan, University of Tehran Pakdasht, Tehran, Iran.

3 Assistant Professor, Research Center of Special Domestic Animals, University of Zabol, Zabol, Iran

4 Associate Professor, Department of Animal Science and Bioinformatics, Agriculture Faculty, University of Zabol, Zabol, Iran

5 Assistant Professor, Agricultural Research, Education and Extension Organization, Zabol, Iran

چکیده [English]

The purpose of this study was to fit different nonlinear models to describe growth curve and selection the best model to describe a growth curve for
calves of Sistani calves. Body weight records of 241 calves (118 males and 123 females) collected by the Sistani Dairy Cattle Research Station of
Zahak from year 2010 to 2017 were used. Four nonlinear models (Gompertz, Logistic, Richards, and Weibull) were fitted to the body weight records
and the best model was selected by the goodness-of-fit criteria (Mean square error, Bayesian information criterion, Akaike information criterion and
corrected coefficient of determination). According to goodness-of-fit criteria, Richards model was the most appropriate model to describe the growth
curve in male and female calves. The effect of sex on curve parameters was significant in many functions (P <0.05). Logistic and Richards models had
the highest and the lowest initial weight parameter, respectively. Male calves reached to the inflection point in a higher age and weight compared to
female calves. According to the results of this study, a proper model can be used to study the growth pattern of this breed in order to better nutritional
management and selection for rapid growth with high accuracy.

کلیدواژه‌ها [English]

  • Body weight
  • Goodness of fit
  • Richards model
  • Sistani calve
  • Weight at inflection point
1. Aggrey SE, Ankra-Badu GA and Marks HL (2003)
Effect of long-term divergent selection on growth
characteristics in Japanese quail. Poultry Science,
82: 538-542.
2. Alonso J, Díez J, Luaces O and Bahamonde A (2018)
A new method to learn growth curves of beef cattle
using a factorization approach. Computers and
Electronics in Agriculture, 151: 77-83.
3. Arango JA and Van Vleck LD (2002) Size of beef
cows: Early ideas, new developments. Genetic
Molecular Research, 1: 51-63.
4. Bahashwan S, Alrawas AS, Alfadli S and Johnson
ES (2015) Dhofari cattle growth curve prediction
by different non-linear model functions. Livestock
Research for Rural Development, 27: 236.
5. Beltran JJ, Buttts WT, Olson TA and Koger M
(1992) Growth patterns of two lines of Angus cattle
selected using predicted growth parameters. Journal
of Animal Science, 70: 734-741.
6. Berry DP, Horan B and Dillon P (2005)
Comparison of growth curves of three strains of
female dairy cattle. Animal Science, 80: 151–160.
7. Birjandi M and Torkaman- Zehi A (2008) Study of
milk production capability and milk characteristics
of Sistani cow in Sistan region. The first national
conference of Sistani cattle research, University of
Zabol. 202-208. (In Persian)
8. Costa RB, Misztal I, Elzo MA, Bertrand JK, Silva
LOC and Lukaszewicz LOC (2011) Estimation of
genetic parameters for mature weight in Angus
cattle. Journal Animal Science, 89: 2680- 2686.
9. Darmani Kuhi H, Porter T, López S, Kebreab E,
Strathe AB, Dumas A, Dijkstra J and France J
(2010) A review of mathematical functions for the
analysis of growth in poultry. World’s Poultry
Science Journal, 66: 227-240.
10. Darmani Kuhi HD, Hossein-Zadeh NG, López S,
Falahi S and France J (2018) Sinusoidal function to
describe the growth curve of dairy heifers. Animal
Production Science, 59(6): 1039-1047.
11. Dogan N, Emer K, Mehmet Z and Tulin A (2010)
Comparison of non-linear growth functions to
describe the growth in Japanese quails. Journal of
Animal Veterinary Advances, 9: 1961-1966.
12. Engelken TJ (2008) Developing replacement beef
heifers. Theriogenology, 70: 569-572.
13. Gano G, Blanco M, Casasús I, Cortés-Lacruz X
and Villalba D (2016) Comparison of B-splines and
non-linear functions to describe growth patterns
and predict mature weight of female beef cattle.
Animal Production Science, 56: 1787-1796.
14. Gbangboche AB, Alkoiret TI, Toukourou Y,
Kagbo A and Mensah GA (2011) Growth curves
for different body traits of Lagune cattle. Journal of
Animal Science, 5(2): 1724.
15. Goldberg V and Ravagnolo O (2015) Description
of the growth curve for Angus pasture-fed cows
under extensive systems. Journal of Animal
Science, 93(9): 4285-4290.
16. Gwaza DP, Bridgwater FE and Williams CG (2002)
Genetic analysis of growth curves for a woody
perennial species. Pinus taeda, 105: 526-531.
17. Hafiz AWM, Mohamad Hifzan R, Izuan Bahtiar AJ
and Ariff OM (2015) Describing growth pattern of
Brakmas cows using non-linear regression models.
Malaysian Journal of Animal Science, 18: 37-45.18. Lopes FB, Silva MC, Marques EG and Ferreria JL
(2011) Ajuste de curvas de crescimento em bovinos
Nelore da região Norte do Brasil. Revista Brasileira
de Saúde e Produção Animal, 12(3): 607-617.
19. Marinho KNS, Freitas AR, Falcão AJS and Dias FEF
(2013) Nonlinear models for fitting growth curves of
Nellore cows reared in the Amazon Biome. Revista
Brasileira de Zootecnia, 42: 645-650.
20. Menchaca MA, Chase CC, Olson TA and
Hammond AC (1996) Evaluation of growth curves
of Brahman cattle of various frame sizes. Journal of
Animal Science, 74: 2140-2151.
21. Miguel JA, Melendez SJ, Asenjo B, Bonilla LM
and Ciria J (2012) Growth modeling of castrated
Brahman males raised in tropical conditions and
born in different seasons. Ciencia e Investigación
Agraria, Santiago, 39(2): 279-288.
22. Moreira RP, Mercadante MEZ, Pedrosa VB,
Cyrillo JNDSG and Henrique W (2016) Growth
curves on females of the Caracu breed. Semina:
Ciências Agrárias, 37(4Supl1): 2749-2758.
23. Pinheiro J, Bates D, DebRoy S, Sarkar D,
Heisterkamp S and Van Willigen B (2016) R Core
Team. nlme: linear and nonlinear mixed effects
models. R package version 3.1-128. Available at
http://CRAN.R-project.org/package=nlme/
(accessed 15 May 2021).
24. Silva FL, Alencar MM, Freitas AR, Packer IU and
Mourão GB (2011) Growth curves in beef cows of
different biological types. Pesquisa Agropecuária
Brasileira, 46: 262-271.
25. Venot E, Piles M, Renand G and Jaffrézic F (2004)
Genetic analysis of growth curve parameters for
beef cattle using Markov chain Monte Carlo
estimation methods. 55th Annual Meeting of the
European Association for Animal Production, Bled,
Slovenia. 1-8.