تأثیر سطوح مختلف روی معدنی، نانو و آلی بر جذب روی، پروتئین میکروبی، متابولیت‌ها و ایمونوگلوبولین‌های خون و آغوز در میش و بره

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی ارشد تغذیه دام، گروه علوم دامی، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران

2 استادیار تغذیه نشخوارکنندگان، گروه علوم دامی، دانشکده کشاورزی، دانشگاه تربیت مدرس

3 استادیار دانشگاه شهرکرد، تخصص: تغذیه نشخوارکنندگان/ بیان ژن/ فیزیولوژی/ دام‌های بزرگ و کوچک

4 دانشگاه تربیت مدرس، تخصص: تغذیه نشخوارکنندگان

چکیده

در این پژوهش، تأثیر سطوح مختلف اکسید روی، نانواکسید روی و متیونین روی در جیره‌های پیش و پس از زایش، بر ﻣﺼﺮف خوراک، جذب روی، پروتئین میکروبی، و متابولیت‌ها و ایمونوگلوبولین‌های G، M و A در خون و آغوز میش و بره‌های شیرخوار بررسی شد. آزمایش از 50 روز پیش تا 30 روز پس از زایش اجرا شد. تعداد 60 رأس میش آبستن کردی خراسان در شش گروه آزمایشی (10 تکرار) در قالب طرح بلوک کامل تصادفی تقسیم شدند. جیره‌های آزمایشی حاوی اکسید روی، نانواکسید روی و متیونین روی معادل با میزان پیشنهادی NRC، و همچنین بیش از نیاز NRC بودند. جایگزینی اکسید روی با نانواکسید روی یا متیونین روی تأثیری بر صفات مختلف در میش نداشت، اما افزایش سطح روی در جیره میش موجب افزایش مصرف روزانه روی، کاهش ضریب جذب روی، و افزایش دفع روی از مدفوع شد (05/0>P). تغذیه میش‌های مادر با منابع مختلف روی تأثیری بر متابولیت‌ها و ایمونوگلوبولین‌های خون بره‌های شیرخوار نداشت. در مجموع، نانواکسید روی تأثیر منفی یا مثبت بر میش و بره‌های شیرخوار نداشت و مصرف متیونین روی به جای اکسید روی نیز موجب بهبود وضعیت متابولیکی دام نشد. از سوی دیگر، افزایش غلظت روی در جیره میزان دفع روی به محیط را افزایش داد. در عمل، استفاده از شکل مرسوم اکسید روی در سطح توصیه NRC برای تأمین نیاز و حفظ ایمنی میش‌ها در دوره پیش و پس از زایش کافی است و نیازی به روی اضافی از منابع دیگر نمی‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of different levels of inorganic, nano and organic Zn on Zn absorption, microbial protein, metabolites and immunoglobulins of blood and colostrum in ewes and their lambs

نویسندگان [English]

  • Sayedeh Forough Hosseini Vardanjani 1
  • Javad Rezaei 2
  • said dehkordi 3
  • Yousef Rouzbehan 4
1 Department of animal Science, Tarbiat Modares University, Tehran
2 Faculty member, Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University
3 Department of Animal Science, Shahrekord University, Shahrekord, Iran
4 Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran
چکیده [English]

In this study, the effect of different levels of ZnO, nano-ZnO and Zn-methionine, in pre- and post-partum diets, on feed intake, Zn absorption, microbial protein, as well as metabolites and IgG, IgM and IgA in the blood and colostrum of ewes and suckling lambs were investigated. Experiment was conducted from 50 days before to 30 days after lambing. Sixty pregnant Khorasan-Kurdish ewes were divided into six experimental groups (10 replicates) in a randomized complete block design. Experimental diets contained ZnO, nano-ZnO and Zn-methionine to meet NRC recommendation, or higher than NRC-recommended level. Replacing ZnO with nano-ZnO or Zn-methionine had no effect on different variables in ewes, but increasing Zn level in the diet of ewes resulted in an increment of daily Zn intake, a decline of Zn absorption coefficient and an increase of fecal Zn excretion (P<0.05). Feeding mother ewes with different Zn sources had no effect on blood metabolites and immunoglobulins of the suckling lambs. Overall, nano-ZnO had no positive or negative effects on ewes and suckling lambs and using Zn-methionine instead of ZnO did not improve the metabolic condition of the animals. On the other hand, the increasing dietary Zn concentration increased zinc excretion in the environment. In practice, using the conventional ZnO at the NRC recommendation level is sufficient to provide the requirement, and to maintain the immunity of pre- and post-partum ewes and there is no need for additional Zn from other sources.

کلیدواژه‌ها [English]

  • Colostrum
  • Ewe
  • Immunoglobulin
  • Microbial protein
  • Nano-ZnO
  • Performance
  • sheep
  • Zn-methionine
1.     زابلی خ و علی عربی ح (1392) اثر سطوح مختلف نانوذرات اکسید روی و اکسید روی بر برخی فراسنجه‌های شکمبه‌ای بزغاله‌های نر مرغوز به روش برون‌تنی و درون‌تنی. تحقیقات تولیدات دامی. 2(1): 14-1.
2.     زابلی خ، علی عربی ح، طباطبایی م م، بهاری ع ا و زارعی قانع ز (1392) بررسی اثر نانوذرات روی و اکسید روی بر عملکرد و برخی فراسنجه‎های خون در بزغاله‌های نر مرغوز. تحقیقات تولیدات دامی. 2(2): 41-29.
3.     فرزامی ب، گلستانی ا و عجمی خیاوی ا (1383) بررسی اثر کاتیون‌های فلزی Zn2+، W6+ و W5+ بر میزان ترشح انسولین و فعالیت آنزیم گلوکوکیناز در جزایر لانگرهانس جداشده از موش صحرایى سالم و دیابتى. مجله دیابت و لیپید ایران. 3(2): 105-97.
4.     Aditia M, Sunarso S, Sevilla CC, Angeles AA (2014). Growth performance and mineral status on goats (Capra hircus Linn.) supplemented with zinc proteinate and selenium yeast. International Journal of Science and Engineering. 7(2): 124-129.
5.     Aliarabi H, Fadayifar A, Tabatabaei MM, Zamani P, Bahari A, Farahavar A and Dezfoulian AH (2015) Effect of zinc source on hematological, metabolic parameters and mineral balance in lambs. Biological Trace Element Research. 168(1): 82-90.
 
6.     Alkaladi A, Abdelazim AM and Afifi M (2014) Antidiabetic activity of zinc oxide and silver nanoparticles on streptozotocin-induced diabetic rats. International Journal of Molecular Sciences. 15(2): 2015-2023.
7.     Chen J, Wang W and Wang Z (2011) Effect of nano-zinc oxide supplementation on rumen fermentation in vitro. Chinease Journal of Animal Nutrition. 8: 023.
8.     Chen XB and Gomes JM (1995) Estimation of microbial protein supply to sheep and cattle based on urinary excretion of purine derivatives–an overview of the technical details. Rowett Research Institute, Bucks-burn, Aberdeen, UK.
9.     Droke EA and Spears JW (1993) In vitro and in vivo immunological measurements in growing lambs fed diets deficient, marginal or adequate in zinc. Journal of Nutritional Immunology. 2(1): 71-90.
10.   Droke EA, Gengelbach GP and Spears JW (1998) Influence of level and source (inorganic vs. organic) of zinc supplementation on immune function in growing lambs. Asian-Australasian Journal of Animal Science. 11: 139-144.
11.   El-Nour Hayat HM, Abdel-Rahman Howida MA and El-Wakeel Safaa A (2010) Effect of zinc methionine on reproductive performance, kids performance, mineral profile and milk quality in early lactation in Baladi goats. World Applied Sciences Journal. 9: 275-282.
12.   Fouda TA, Youssef MA and El-Deeb WM (2011) Correlation between zinc deficiency and immune status of sheep. Veterinary Research. 4: 50-55.
13.   Garg AK, Mudgal V and Dass RS (2008) Effect of organic zinc supplementation on growth, nutrient utilization and mineral profile in lambs. Animal Feed Science and Technology. 144: 82-96.
14.   Li MZ, Huang JT, Tsai YH, Mao SY, Fu CM and Lien TF (2016) Nanosize of zinc oxide and the effects on zinc digestibility, growth performances, immune response and serum parameters of weanling piglets. Animal Science Journal. 87(11): 1379-1385.
15.   Malakouti MJ (2007) Zinc is a neglected element in the life cycle of plants. Middle Eastern and Russian Journal of Plant Science and Biotechnology. 1(1): 1-12.
16.   Nayeri A, Upah NC, Sucu E, Sanz-Fernandez MV, DeFrain JM, Gorden PJ and Baumgard LH (2014) Effect of the ratio of zinc amino acid complex to zinc sulfate on the performance of Holstein cows. Journal of Dairy Science. 97(7): 4392-4404.
17.   NRC (2007) Nutrient requirements of small ruminants. National Academies Press, Washington, DC, USA.
18.   Radostits OM, Gay CC, Blood DC and Hinchliffe KW (2007) Veterinary medicine. A textbook of the diseases of cattle, sheep, goats and horses, 10th ed. Saunders, WB. Ltd., London, UK.
19.   Sobhanirad S and Naserian AA (2012) Effects of high dietary zinc concentration and zinc sources on hematology and biochemistry of blood serum in Holstein dairy cows. Animal Feed Science and Technology. 177: 242-246.
20.   Suttle NF (2010) The Mineral Nutrition of Livestock, 4rd ed. CABI Publishing, New York, USA.
21.   Swain PS, Rajendran D, Rao SBN and Dominic G (2015) Preparation and effects of nano mineral particle feeding in livestock: A review. Veterinary World. 8(7): 888-891
22.   Swain PS, Rao SBN, Rajendran D, Dominic G and Selvaraju S (2016) Nano zinc, an alternative to conventional zinc as animal feed supplement: A review. Animal Nutrition. 2: 134-141.
23.   Wu G (2018) Principles of Animal Nutrition, 1th ed. Taylor & Francis Group, LLC, Boca Raton, FL, USA.
24.   Zaboli K, Aliarabi H, Bahari AA and Abbasalipourkabir R (2013) Role of dietary nano-zinc oxide on growth performance and blood levels of mineral: A study on in Iranian Angora (Markhoz) goat kids. Journal of Pharmaceutical and Health Sciences. 2(1): 19-26.
25.   Zeedan Kh, El-Malky OM and Komonna OF (2009) Productive and reproductive performance of buffaloes fed on rations supplemented with Biogen-Zinc at late pregnancy period. In: Proceedings 2nd Scientific Conference of Animal Wealth Research in the Middle East and North Africa. Massive Conferences and Trade Fairs, Cairo, Egypt. 237-249.