نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد

2 استادیار دانشگاه تهران، پردیس ابوریحان، تخصص: ژنتیک و اصلاح نژاد دام/ ژنتیک کمی/ انتخاب ژنومیک

3 هیات علمی دانشگاه آزاد اسلامی واحد کرج

چکیده

هدف از این مطالعه مقایسه سه روش پارامتری (GBLUP، BayesB، RKHS) و دو روش بازنمونه­گیری (Bagging GBLUP و Random Forest) در پیش بینی ارزش­های اصلاحی ژنومیک برای صفاتی با ساختار ژنتیکی متفاوت بود. یک ژنوم با سه کروموزوم، هر کروموزوم به طول یک مورگان شبیه­سازی شد و روی آن 1500 نشانگر تک نوکلئوتیدی (SNP) در سه سناریو 50، 100 و 200QTL به طور یکنواخت پخش شدند. اثر جایگزینی QTLها با استفاده از توزیع نرمال استاندارد، گاما و یکنواخت با وراثت­پذیری 30 درصد مدل سازی شدند. توانایی پیش­بینی روش­های آماری با استفاده از آماره­های همبستگی بین  ارزش­های اصلاحی پیش­بینی شده و واقعی و همچنین رگرسیون  ارزش اصلاحی واقعی بر پیش­بینی شده  بررسی شد. نتایج  نشان داد در جمعیت­های تایید، روش RF باعث بیش-برآورد  رگرسیون ارزش­های اصلاحی واقعی بر پیش­بینی شده شد، در حالی که روش­های GBLUP، BayesB  و RKHS منجر به کم-برآورد ضریب رگرسیون شدند. به جز روش Bagging GBLUP در دیگر روش­ها تفاوت معنی داری با تغییر توزیع اثرات QTL مشاهده نشد اما در مجموع عملکرد دو روش GBLUP و BayesB نسبت به دیگر  روش­ها بهتر بود. یکی از دلایل احتمالی برتری GBLUP و BayesB بر دیگر  روش­ها می­تواند شبیه سازی صفات با اثرات صرفا ًژنتیکی افزایشی بوده باشد. به طور کلی، روش­های GBLUP و BayesB بر روش های بازنمونه­گیری در پیش­بینی های ژنومی ارجحیت دارند.

کلیدواژه‌ها

عنوان مقاله [English]

Comparison of parametric and resampling methods in genetic evaluation of quantitative traits with different genetic structure

نویسنده [English]

  • Rostam AbdolahiArpanahi 2

2 Assistant Professor, University of Tehran, Aborayhan Campus

چکیده [English]

The objective of this study was to compare three parametric (GBLUP, BayesB and RKHS) and two resampling (Bagging GBLUP and Random Forest) statistical methods in genomic prediction of traits with different genetic architecture. A genome consisting of three chromosomes, 1 Morgan each, was simulated on which 5000 SNPs and 50, 100 and 200 QTLs were distributed. The substitutions effects of QTLs were modeled with normal, gamma and uniform distributions with a level of heritability equal to 0.30. The predictive performance of statistical models was evaluated using the correlation between predicted and true breeding values as well as the regression of predicted values on true breeding values. In the target population, Random Forest resulted in overestimation of estimated regression coefficients while GBLUP, BayesB and RKHS led to an underestimation of regression coefficients of true breeding values on predicted breeding values. In exception of Bagging GBLUP, the performance of all statistical methods was the same in three gene effect distributions. However, the performance of GBLUP and BayesB was better than other statistical methods. A reason for this superiority could be the additive architecture of simulated traits. In conclusion, GBLUP and BayesB were superior over resampling methods in genomic predictions.

کلیدواژه‌ها [English]

  • Bagging
  • Genetic Architecture
  • Genomic Evaluation
  • Machine learning
  • Random forest
  • RKHS

1. عبدالهی آرپناهی ر، پاکدل ع، نجاتی-جوارمی ا و مرادی شهربابک م (1392) مقایسه روش­های ارزیابی ژنومیک در صفاتی با معماری ژنتیکی گوناگون. مجله تولیدات دامی، 15(1):65-77

 

2. Abdollahi-Arpanahi R, Morota G, Valente BD, Kranis A, Rosa GJM and Gianola D (2015) Assessment of bagging GBLUP for whole genome prediction of broiler chicken traits. Journal of Animal Breeding and Genetics. 132(3): 218-228.

3. Bastiaansen JWM, Coster A, Calus MPL, van Arendonk JAMand Bovenhuis H (2011) Long-term response to genomic selection: effects of estimation method and reference population structure for different genetic architectures. Genetics Selection Evolution. 44:3.

4. Boulesteix AL, Janitza S, Kruppa J, König IR (2012) Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics. Technical Report. Department of Statistics. University of Munich.

5. Breiman L. (1996) Bagging predictors. Machine Learning., 24, 123-140.

6. ColombaniC, LegarraA, FritzS, GuillaumeF, CroiseauP, DucrocqV and Robert-Granié C (2012) Application of Bayesian least absolute shrinkage and selectionoperator (LASSO) and BayesCp methods for genomic selection in French Holstein and Montbéliarde breeds. Journal of Dairy Science. 96: p. 575–591.

7. Daetwyler HD, Calus MPL, Pong-Wong R, de los Campos G and Hickey JM (2013) Genomic Prediction in Animals and Plants: Simulation of Data, Validation, Reporting, and Benchmarking. Genetics 193: 347–365.

8. de los Campos G, Hickey JM. Pong-Wong R, Daetwyler HD, Calus MP (2013) Whole-genome regression and prediction methods applied to plant and animal breeding. Genetics, 193(2), 327-345.

9. Gianola D, Fernando RL and Stella A (2006) Genomic-assisted prediction of genetic value with semi-parametric procedures. Genetics. 173:1761-1776.

10. Gianola D, Weigel KA, Krämer N, Stella A, Schön C-C (2014). Enhancing genome-enabled prediction by bagging genomic BLUP. PLoS ONE, 9, e91693.

11. González-Camacho JM, de Los Campos G, Pérez P, Gianola D, Cairns JE, Mahuku G, Babu R, Crossa J (2012) Genome-enabled prediction of genetic values using radial basis function neural networks. Theoretical and Applied Genetics. 125(4):759-71.

12. González-Recio O and Forni S (2011) Genome-wide prediction of discrete traits using Bayesian regressions and machine learning. Genetics Selection Evolution 43:7.

13. González-Recio O, Jiménez-Montero AJ and Alenda R (2013) The gradient boosting algorithm and random boosting for genome-assisted evaluation in large data sets. Journal of Dairy Science 96: 614–624.

14. González-Recio O, Rosa GJ, Gianola D (2014) Machine learning methods and predictive ability metrics for genome-wide prediction of complex traits. Livestock Science. 166:217-31.

15. Habier D, Fernando RL and Dekkers JCM (2009) Genomic selection using low-density marker panels. Genetics 182; 343–353.

16. Heslot N, Yang H-P, Sorrells ME, Jannink J-L (2012) Genomic selection in plant breeding: a comparison of models. Crop Science. 52:146-160.

17. Howard R, Carriquiry AL, Beavis WD (2014) Parametric and Nonparametric Statistical Methods for Genomic Selection of Traits with Additive and Epistatic Genetic Architectures. G3: Genes| Genomes| Genetics: g3. 114.010298.

18. Long N, Gianola D, Rosa GJM, Weigel KA and Avendano S (2007) Machine learning classification procedure for selecting SNPs in genomic selection: Application to early mortality in broilers. Journal of Animal Breeding and Genetics 124: 377–389.

19. Meuwissen THE, Hayes BJ and Goddard ME (2001) Prediction of total genetic value using genome wide dense marker maps. Genetics. 157: 1819–1829.

20. Morota G, Gianola D (2014) Kernel-based whole-genome prediction of complex traits: a review. Frontiers in genetics. 5:363.

21. Moser G, Tier B, Crump RE, Khatkar MS and Raadsma HW (2009) A comparison of five methods to predict genomic breeding values of dairy bulls from genome-wide SNP markers. Genetics Selection Evolution. 41:56.

22. Muir WM (2007) Comparison of genomic and traditional BLUP-estimated breeding value accuracy and selection response under alternative trait and genomic parameters. Journal of Animal Breeding and Genetics. 124: 342-355.

23. Schaeffer LR (2006) Strategy for applying genome-wide selection in dairy cattle. Journal of 3- Animal Breeding and Genetics 123: 218–223.

24. Technow FR (2013) hypred: Simulation of genomic data in applied genetics. Available at: http://cran.r-project.org/web/packages/hypred/index.html.

25. Valle C, Nanculef R, Allende H and Moraga C (2007). Two bagging algorithms with coupled learners to encourage diversity.In, Advances in Intelligent Data Analysis VII. Springer. pp. 130-139.

26. Wolc A, Arango J, Settar P, Fulton JE, O'Sullivan NP, Preisinger R, Habier D, Fernando R, Garrick DJand Dekkers JC (2011) Persistence of accuracy of genomic estimated breeding values over generations in layer chickens. Genetics Selection Evolution. 43, 23.