مقایسه مدل‏های غیرخطی با تابعیت اسپلاین و شبکه عصبی مصنوعی برای توصیف منحنی رشد جوجه‏های گوشتی تغذیه شده با پوسته برنج

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشوی دکتری تخصصی/دانشگاه لرستان

2 دانشگاه لرستان، تخصص: تغذیه نشخوارکنندگان/ سیستم های ارزشیابی خوراک/ فرآوری مواد خوراکی/ مدلسازی در علوم دامی/ دام های کوچک و بزرگ

3 عضو هیات علمی/دانشگاه لرستان

چکیده

در این آزمایش فراسنجه‌های رشد جوجه‏های گوشتی تغذیه شده با پوسته برنج برآورد شد و وزن نهایی این جوجه‏ها با استفاده از مدل‏های غیرخطی، تابعیت اسپلاین و شبکه عصبی مصنوعی پیش‏بینی شد. تیمارها شامل تیمار شاهد و تیمارهای حاوی 5/2، پنج و 5/7 درصد پوسته برنج بود. نتایج نشان داد که وزن نهایی پیش بینی شده توسط تمامی مدلهای مورد استفاده در پژوهش حاضر در جوجه‌های تیمار شاهد بالاتر از جوجه‌های سایر تیمارها بود (05/0>P)، ولی تفاوتی در وزن نهایی پیش بینی شده در میان جوجه‌های تغذیه شده با جیره‌های حاوی سطوح مختلف پوسته برنج مشاهده نشد. زمان نقطه عطف منحنی رشد در جوجه‌های گروه شاهد پایین‌تر از جوجه‌های سایر تیمارها بود (05/0>P)، ولی افزایش سطح پوسته برنج در جیره تاثیر معنی داری بر این فراسنجه نداشت. بیشترین و کمترین وزن محاسبه شده در نقطه عطف منحنی رشد به ترتیب مربوط به جوجه‌های تغدیه شده با جیره شاهد و جیره حاوی پنج درصد پوسته برنج بود (05/0P>). تغذیه جوجه‌ها با جیره‌های حاوی پوسته برنج شاخص b مدل تابعیت اسپلاین را در مقایسه با گروه شاهد کاهش داد (05/0>P)، در حالی که شاخص c صرفا در جوجه‌های تغذیه شده با جیره حاوی 5/7 درضد پوسته برنج پایین‌تر از گروه شاهد بود (05/0>P). بر اساس نتایج حاصل، تابعیت اسپلاین برای بیش‏بینی وزن جوجه‏های گوشتی مصرف کننده پوسته برنج در سن 42 روزگی کارایی بیشتری از مدل‏های غیرخطی و شبکه عصبی مصنوعی دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Comparison of non-linear, spline regression and neural networks models to predict the growth curves of broiler chickens fed different levels of rice hull

نویسندگان [English]

  • Abbas Masoudi 1
  • Arash Azarfar 2
1 PhD student/Lorestan university
چکیده [English]

In the current study, growth parameters of broiler chickens fed with rice hull were estimated and their final body weigh was predicted using non-linear, spline regression and neural networks models. The experimental treatments were control and dietary inclusion of rice hull at the levels of 2.5, 5 and 7.5 percent. Predicted final body weight estimated by non-linear regression models in the current study was higher in control chicks compare with those fed rice hull containing diets (P<0.05), but similar among the other birds. Inflection point of growth curve occurred earlier in in control chicks than those fed hull rice containing diets (P<0.05), but increasing hull rice in the diet level had no effect on this parameter. The highest and lowest body weight at inflection point observed in birds fed control and those fed diet containing 5 percent of rice hull, respectively (P<0.05). Feeding chicks with diets containing rice hull decreased parameters b of spline regression model compared with control birds, while parameter c was only lower in birds fed diet containing 7.5 percent hull rice compared with birds on control diet (P<0.05). According to our results, spline regression model is more efficient than the non-linear and artificial neural network models to predict body weight of broiler chicks fed with diets containing rice hull at day 42 of age.

کلیدواژه‌ها [English]

  • Broilers
  • final body weight
  • model efficiency
  • prediction of growth rate
  • Rice hull
چاجی م، مسعودی ع، دمیری ح، بوجارپور م و آذرفر ا (1393) استفاده از مدل گمپرتز برای تخمین فراسنجه‌های رشد جوجه‌های گوشتی تغذیه شده با بنتونیت سدیم و مقایسه آن با شبکه عصبی - مصنوعی. تحقیقات دام و طیور. 3(2): 12-21.
میردریکوندی م، مسعودی ع، آذرفر ا و کیانی ع (1394) مقایسه مدل ریاضی گمپرتز و شبکه عصبی مصنوعی جهت تخمین فراسنجه­های رشد جوجه‌های گوشتی دریافت‌کننده عصاره کنگرفرنگی از طریق آب آشامیدنی. علوم دامی ایران. 46(1): 9-16.
نیکخواه م، متقی‏طلب م و زواره م (1388) مقایسه مدل‌های رشد هایپربولستیک با مدل‌های رشد کلاسیک در توصیف منحنی رشد جوجه‌های نر گوشتی سویه راس. علوم دامی ایران. 40(4): 71-78.
4. Aerni V, El-Lethey H and Wechsler B (2000) Effect of foraging material and food form on feather pecking in laying hens. British Poultry Science. 41: 16-21.
5. Aggrey SE (2002) Comparison of three nonlinear and spline regression models for describing chicken growth curves. Poultry Science. 81: 1782-1788.
6. Amerah AM, Ravindran V and Lentle RG (2009) Influence of insoluble fibre and whole wheat inclusion on the performance, digestive tract development and ileal microbiota profile of broiler chickens. British Poultry Science. 50: 366-375.
7. Arango JA and Van Vleck LD (2002) Size of beef cows: Early ideas, New developments. Genetics and Molecular Research. 1: 51-63.
8. Bahreini Behzadi MR and Aslaminejad AA (2010) A comparison of neural network and nonlinear regression predictions of sheep growth. Journal of Animal and Veterinary Advances. 9(16): 2128-2131.
9. Bathaei SS and Leroy PL (1996) Growth and mature weight of Mehraban Iranian fat-tailed sheep. Small Ruminant Research 22: 155-162.
10. Carrijo SM and Duarte FAM (1999) Description and comparison of growth parameters in Chianina and Nelore cattle breeds. Genetics and Molecular Research. 22(2): 187-196.
11. Correa-Matos NJ, Donovan SM, Issacson RE, Gaskins HR, White BA and Tappenden KA (2003) Fermentable fiber reduces recovery time and improves intestinal function in piglets following Salmonella typhimurium infection. Journal of Nutrition. 133: 1845-1852.
12. Freitas AR (2005) Curvas de crescimento na producao animal. Revista Brasileira de Zootecnia. 34: 786-795.
13. González-Alvarado JM, Jiménez-Moreno E, Lázaro R and Mateos GG (2007) Effects of type of cereal, heat processing of the cereal and inclusion of fiber in the diet on productive performance and digestive traits of broilers. Poultry Science. 86: 1705-1715.
14. Janssen WMMA and BCarré B (1985) Influence of fiber on digestibility of broiler feeds. In: Cole, DJA and Haresign W (Eds.), Recent Advances in Animal Nutrition. Butterworths, London, UK. Pp. 78-93.
15. Jiménez-Moreno E, González -Alvarado JM, Bonilla AP, Lzaro R and Mateos GG (2007) Influence of feed form and fiber inclusion in the diet on performance of broilers from one to twenty-one days of age. Poultry Science 86(1): 68 (Abstract).
16. Mateos GG, Lázaro R and Gracia MI (2002) The feasibility of using nutritional modifications to replace drugs in poultry feeds. Journal of Applied Poultry Research. 11: 437-452.
17. Narinc D, karaman E, Ziya Firat M and Aksoy T (2010) Comparison of Nonlinear Growth models to describe the growth in Japanese Quail. Journal of Animal and Veterinary Advances. 9(14): 1961-1966.
18. National Research Council (1994) Nutrient requirement of poultry. 9th Review Edition. National Academy Press. Washington. D.C.
19. Roush WB and Branton SL (2005) A Comparison of fitting growth models with a genetic algorithm and nonlinear regression. Poultry Science. 84: 494-502.
20. Roush WB, Dozier WA and Branton SL (2006) Comparison of Gompertz and neural network models of broiler growth. Poultry Science. 85: 794-797.
21. Sánchez JP, Misztal I, Aguila I and Bertrand JK (2008) Genetic evaluation of growth in a multi breed beef cattle population using random regression-linear spline models. Journal of Animal Science. 86: 267-277.
22. SAS Institute (2001) SAS Users Guide. Version 9.1.  Review edition. SAS Institute Inc. Cary, NC. USA.
23. StatSoft Inc. STATISTICA (2011) Data analysis software system. Version 10 [cited 2016 April 26].  Available from: www.statsoft.com.
24. Vitezica ZG, Marie-Etancelin C, Bernadet MD, Fernandez X and Robert-Granie C (2010) Comparison of nonlinear and spline regression models for describing mule duck growth curves. Poultry Science. 89: 1778-1784.
25. Yee D, Prior MG and Florence LZ (1993) Development of predictive models of laboratory animal growth using artificial neural networks. Computer Applications in Biosciences. 9: 517-522.