تأثیر گیاه و اسانس پونه بر فراسنجه‌های تخمیر، تولید گاز متان و جمعیت پروتوزوآیی شکمبه بز به روش آزمایشگاهی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری دامپزشکی، دانشکده دامپزشکی، دانشگاه رازی، کرمانشاه، ایران

2 استادیار گروه علوم دامی، پردیس کشاورزی و منابع طبیعی، دانشگاه رازی، کرمانشاه، ایران

3 دانشیار گروه علوم دامی، پردیس کشاورزی و منابع طبیعی، دانشگاه رازی، کرمانشاه، ایران

چکیده

هدف از این مطالعه،ارزیابی تاثیر سطوح مختلف گیاه و اسانس پونه بر فرایند تخمیر شکمبه و جمعیت پروتوزوآیی در بز بود. گیاه پونه به ترتیب در سطوح صفر، 25، 35، 55، 75 و 100 میلی‌گرم در 30 میلی‌لیتر و اسانس پونه در سطوح صفر، 1700 ،3000، 6700 ، 8300 ، 10000 میلی‌گرم در لیتر و موننسین (شاهد مثبت و50 میلی‌گرم محلول در اتانول) به مایع شکمبه اضافه شد. آزمون تولید گاز در قالب یک طرح کاملاً تصادفی و با پنج تکرار در هر تیمار انجام شد. گاز تولیدی در سطوح 75 و 100 میلی‌گرم گیاه پونه کاهش یافت (001/0˂p). تجزیه‌پذیری ماده ‌آلی هنگام استفاده از دو سطح 75 و 100 میلی‌گرم گیاه پونه و موننسین در مقایسه با شاهد کاهش(001/0˂p) یافت. در مقایسه با تیمارهای شاهد و موننسین، همه‌ی سطوح گیاه پونه غلظت ازت آمونیاکی را کاهش(001/0 ˂p) داد، اما ضریب تفکیک‌‌پذیری تنها در سطح 100 میلی‌گرم پونه و تیمار موننسین افزایش(001/0˂p) یافت. بازده تولید پروتئین میکروبی نیز در سطح100 میلی‌گرم پونه افزایش (001/0˂p) داشت. همزمان با کاهش مقادیر اسیدهای چرب فرار، انرژی قابل سوخت‌ وساز و انرژی خالص شیردهی در دو سطح 75 و 100 میلی‌گرم پونه نسبت به شاهد کاهش(001/0 ˂p) یافت. جمعیت کل پروتوزوآی و زیر خانواده‌ی انتودینینه در تمام سطوح گیاه پونه کاهش (001/0˂p) یافت. اسانس پونه، گاز متان، ازت آمونیاکی و جمعیت پروتوزوآیی را کاهش و بازده تولید پروتئین میکروبی را بهبود بخشید (001/0 ˂p ). بر اساس نتایج حاصل، استفاده از گیاه و اسانس پونه، گاز متان، نیتروژن آمونیاکی و جمعیت پروتوزوآیی را کاهش و ضریب تفکیک پذیری و بازده تولید میکروبی را بهبود می بخشد.

کلیدواژه‌ها


عنوان مقاله [English]

The effect of plant and essential oils of Mentha longoforia on in vitro ruminal fermentation parameters, methane production and protozoa population of goat

نویسندگان [English]

  • Ali Khezrian 1
  • Mohammad Ebrahim Nooriyan Soroor 2
  • Mohammad Mahdi Moeini 3
1 DVM Student, Veterinary Faculty, Razi University, Kermanshah, I.R of IRAN
2 Assistant Professor of Animal Department, Agriculture and Natural Resource Faculty , Razi University, Kermanshah,I.R of Iran
3 Associate Professor of Animal Department, Agriculture and Natural Resource Faculty , Razi University, Kermanshah,I.R of Iran
چکیده [English]

The aim of this study was to evaluate the effects of Mentha longofolia plant (MLP) and its essential oils (MLE) on ruminal fermentation and protozoa population in goat. The MLP at six levels 0, 25, 35, 55, 75 and 100 mg/30 ml, and the essential oil at six levels 0, 1700,3000,6700,8300 and 10000 mg/L plus monensin (as positive control, 50 mg and dissolved in ethanol) added to rumen fluid respectively. The in vitro gas production was conducted by compiled randomized design with five replications for each treatment. The gas production was decreased at levels of 75 and 100 mg of MLP (p˂0.001). Organic matter degradability was reduced (p˂0.001) at 75 and 100 mg levels respectively of MLP compared to control. Ammonia nitrogen concentration was decreased (p˂0.001) at all levels of MLP compared with control and monensin treatments. However, partition factor was increased (p˂0.001) only at 100 mg of MLP. The efficiency of microbial protein production was increased (p˂0.001). The metabolisable energy and net energy lactation were decreased (p˂0.001) by inclusion MLP at two level of 75 and 100 mg as total volatile fatty acids reduced, compared with control treatment. The total protozoa and subfamily of Entodinninea were declined (p˂0.001) at all levels of MLP compared with control and positive control treatments. The parameters of methane production, ammonia N and protozoa population were reduced (p˂0.001) by all levels of MLE. The efficiency of microbial protein production was enhanced (p˂0.001).Results suggest that the methane gas production, ammonia N and protozoa populations were reduced in both MLP and MLE and improved partition factor and microbial protein production.

کلیدواژه‌ها [English]

  • Ammonia nitrogen
  • Degradability
  • Goat
  • Greenhouse Gas
  • Mentha longofolia
1 . نوریان سرور م ا و روزبهان ی(1392) بررسی تاثیر گیاه گلپر بر فراسنجه­های تخمیر شکمبه گوسفند و تولید گاز متان  به روش درون شیشه­ای. نشریه علوم دامی ایران. دوره 44، شماره 4: 395-385.
2 . Abas  I, Ozpinar  H  Can-Kutay  H  and Kahraman  R)2005( Determination of the metabolizable energy (ME) and net energy actation (NEL) contents of some feeds in the marmara region by in vitro gas technique. Turkish Journal of Vetenaryan and Animal Science. 29:751-757.
3 . Agarwal N, Shekhar C, Kumar R, Chaudhary L C and Kamra D N (2009) Effect of peppermint (Mentha piperita) oil on in vitro methanogenesis and fermentation of feed with buffalo rumen liquor. Animal Feed Science and Technology. 148: 321–327.
4 . Ando S, Nishida T, Ishida M, Hosoda  K and Bayaru E (2003) Effect of peppermint feeding on the digestibility, ruminal fermentation and protozoa. Livestock Production Science. 82: 245–248.
5 . AOAC. 1990. Official Methods of Analysis, 15th edition. Association of Official Analytical Chemists. Arlington, VA. USA.
6 . Barnet A J G and   Reid R L ( 1957) Studies on production of volatile fatty acids from grass by rumen liquid in an artificial rumen. Journal Agriculture Science, (Camb). 48: 315-321.
7 . Beauchemin KA, McAllister T A and McGinn S M (2009) Dietary mitigation of enteric methane from cattle. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources.4:1-18.
8 . Benchaar C, Calsamiglia S, Chaves AV, Fraser GR, Colombatto D, McAllister TA and  Beauchemin KA(2008) A review of plant-derived essential oils in ruminant nutrition and production. Animal Feed Science and Technology. 145: 209–228.
9 . Benchaar C, Chaves1 A V, Fraser G R, Wang Y, Beauchemin KA and McAllister T A (2007)  Effects of essential oils and their components on in vitro rumen microbial fermentation. CanadianJournal of Animal Science. 413-419.
10 . Benchaar C, Rivest J, PomarC and   ChiquetteJ (1998) Prediction of Methane Production from Dairy Cows Using Existing Mechanistic Models and Regression Equations. Journal of Animal Science. 76:617-627.
11 . Benchaar C and Greathead H (2011) Essential oils and opportunities to mitigate enteric methane emissions from ruminants. Animal Feed Science and Technology. 166– 167: 338– 355.
12 . Blümmel M, Karsli A and Russell J R( 2003) Influence of diet on growth yields of rumen microorganisms in vitro and in vivo: influence on growth yield of variable carbon fluxes to fermentation products. British Journal of Nutrition. 90:625–634.
13 . Broderick G A and Kang J H (1980) Automated simultaneous determinations of ammonia and total amino acids in ruminal fluid and in vitro media. Journal of Dairy Science. 63: 64–75.
14 . Eckard R J, Grainger C and de Klein C A M (2010) Options for the abatement of methane and nitrous oxide from ruminant production: A review. Livestock Science. 130: 47–56.
15 . Fievez V, Babayemi O J and Demeyer D (2005) Estimation of direct and indirect gas production in syringes: A tool to estimate short chain fatty acid production that requires minimal laboratory facilities. Animal Feed Science Technology.  123–124:197– 210.
16 . Fraser G R, Chaves A V, Wang Y, McAllister T A, Beauchemin K A and Benchaar C (2007) Assessment of the effects of cinnamon leaf oil on rumen microbial fermentation using two continuous culture systems. Journal of Dairy Science. 90: 2315–2328.
17 . Garc´ıa-Gonz´alez R, L´opez S, Fern´andez M and Gonz´alez J S (2008) Dose response effects of Rheum officinale root and Frangula alnus bark on ruminal methane production in vitro. Animal Feed Science and Technology.145: 319–334.
18 . Goel G, Makkar H P S and Becker K (2008) Effects of Sesbania sesban and Carduus pycnocephalus leaves and Fenugreek (Trigonella foenum-graecum L.) seeds and their extracts on partitioning of nutrients from roughage- and concentrate-based feeds to methane. Animal Feed Science and Technology. 147: 72–89.
19 . Hristov AN, Ropp JK, Zama S and Melgar A (2008) Effects of essential oils on in vitro ruminal fermentation and ammonia release. Animal Feed Science and Technology. 144: 55–64.
20 . Hussain  I  and Cheeke PR (1995) Effect of Yucca Scidigera extract on rumen and blood profiles of steers fed concentrate- or roughage-based diets. Animal Feed Science and Technology. 51:231–242.
21 . Kim SH, Mamuad LL, Jeong CD, Choi YJ , Lee SS, Ko JU and Lee SS (2013) In vitro Evaluation of Different Feeds for Their Potential to Generate Methane and Change Methanogen Diversity. Asian Australians Journal Animal Science.  Vol. 26, No. 12: 1698-1707.
22 . McIntosh  F M,Williams  P, Losa  R,Wallace  R J, Beever  D A  and Newbold C J ( 2003) Effects of essential oils on ruminal microorganisms and their protein metabolism. Applied Environment Microbiology. 69:5011–5014.
23 . Menke K H and Steingass H (1988) Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research Development. 28: 7–55.
24 . Morgavi D  P, Forano  E, Martin C and Newbold  C J (2010) Microbial ecosystem and methanogenesis in ruminants. Animal. 7:1024–1036.
25 . National Research Council. (2007). Nutrient Requirments of Small Ruminants. National academy Press, Washington, DC.,USA.
26 . Semnani M, Saeedi M   and  Akbarzadeh M (2011) Chemical Composition and Antimicrobial Activity of the Essential Oil of Mentha pulegium L . Journal of Essential Oil Bearing Plants. 14 (2): 208 – 213.
27 . Tomkins N W,  Denmanb S E,  Pilajunc P, Wanapatc M, McSweeney C S  and  Elliot R (2015) Manipulating rumen fermentation and methanogenesis using an essential oil and monensinin beef cattle feda tropical grasshay . Animal Feed Science and Technology. 200: 25–34.
28 . Vercoe E  P, Makkar  H P S and Schlink  A  C (2010)  In vitro screening of plant resources for extra-nutritional attributes in ruminants: nuclear and related methodologies (Ed.), In Vitro Screening of Feed Resources for Efficiency of Microbial Protein Synthesis, (pp. 106-144). New York: Springer.
29 . Zmora  P, Cieslak A, Jedrejek D, Stochmal A, Pers-Kamczyc E, Oleszek W, Nowak A, Szczechowiak J, Lechniak D and Szumacher-Strabel M (2012) Effect of Mentha piperita L. on in vitro rumen methanogenesis and fermentation. Acta Agriculturae Scandinavica. Animal Science. 66: 66–71.