نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد، گروه علوم دام و طیور، پردیس ابوریحان، دانشگاه تهران، پاکدشت‌ـایران

2 دانشیار، گروه علوم دام و طیور، دانشگاه تهران، پاکدشت‌ـ‌ایران

3 استادیار، گروه علوم دام و طیور، پردیس ابوریحان، دانشگاه تهران، پاکدشت‌ـ‌ایران

چکیده

تأثیر نانوذرات کروم بر عملکرد و صفات کیفی گوشت بلدرچین ژاپنی تحت تنش فیزیولوژیکی با استفاده از 360 قطعه جوجه بلدرچین ژاپنی از 17 تا 35روزگی در شش تیمار، چهار تکرار، و 15 قطعه پرنده در هر تکرار بررسی شد. تیمارها شامل شاهد منفی (بدون تنش) و پنج تیمار تحت تنش فیزیولوژیکی حاوی سطوح گوناگون نانوذرات کروم (صفر، 200، 400، 800، و 1200 میکروگرم بر کیلوگرم جیره) بودند. از افزودن دگزامتازون به جیره (6/0 میلی‏گرم در کیلوگرم وزن بدن) برای ایجاد تنش فیزیولوژیک استفاده شد. تنش فیزیولوژیکی موجب کاهش مصرف خوراک، کاهش رشد، افزایش ضریب تبدیل غذایی، و افزایش مقدار مالون دی‏آلدهید (MDA) گوشت سینه و ران شد (05/0P<‏‏‏). مکمل‌کردن ‌جیرۀ پرندگان تحت تنش با سطوح ‌گوناگون نانوذرات کروم موجب بهبود خطی میانگین افزایش وزن روزانه (02/0P<)، کاهش خطی ضریب تبدیل غذایی (05/0P<)، میزان MDA گوشت سینه (04/0P<)، و ران (05/0P<) شد. نتایج موجود نشان داد که افزودن نانوذرات کروم به جیره تأثیر منفی تنش فیزیولوژیک بر عملکرد و کیفیت گوشت را کاهش می‏دهد.

کلیدواژه‌ها

عنوان مقاله [English]

Effect of physiological stress and dietary chromium nanoparticles supplementation on performance and meat quality traits of Japanese quail

نویسندگان [English]

  • Atefeh Berenjian 1
  • Seyed Davood Sharifi 2
  • Abdollah Mohammadi Sangcheshmeh 3
  • Shokoofeh Ghazanfari 3

1 Graduated M.Sc., Department of Animal and Poultry Science, College of Abouraihan, University of Tehran, Pakdasht, Iran

2 Associate Professor, Department of Animal and Poultry Science, College of Abouraihan, University of Tehran, Pakdasht, Iran

3 Assistant Professor, Department of Animal and Poultry Science, College of Abouraihan, University of Tehran, Pakdasht, Iran

چکیده [English]

Effects of chromium nano particles (NanoCr) on performance and meat quality of Japanese quail under physiological stress was determined by  using 360 birds in a completely randomized design with six treatments, four replicates and 15 birds per each, during  17- 35 d of age. The tratments were negative control (non-stressed), and five groups under physiological stress which fed on diets supplemented with different levels of NanoCr (0, 200, 400, 800 and 1200 µgkg-1). Dexamethasone (0.6 mgkg-1 BW) was added to diet for induction of physiological stress. Physiological stress reduced feed intake and growth, whereas increased feed conversion ratio (FCR) and thigh and breast muscles malondialdehyde (MDA) concentration (P<0.05). Stressed birds were fed on diets containing increased levels of NanoCr linearly improved weight gain (P< 0.02), and decreaced FCR (P< 0.05), MDA levels in breast (P< 0.04), and thigh muscles (P< 0.006). The results showed that supplementation of diet with NanoCr can alleviate the negative effects of physiological stress on performance and meat quality of quails.

کلیدواژه‌ها [English]

  • chromium nanoparticles
  • Japanese quail
  • Malondialdehyde
  • Meat quality
  • Physiological Stress
1. Ali MS, Kang G and Joo ST (2008) A review: Influences of pre-slaughter stress on poultry meat quality. Asian Australasian Journal of Animal Sciences 21(6): 912.
2. Anderson RA and Kozlovsky AS (1985) Chromium intake, absorption and excretion of subjects consuming self-selected diets. The American Journal of Clinical Nutrition. 41(6): 1177-1183.
3. Botsoglou NA, Fletouris DJ, Papageorgiou GE, Vassilopoulos VN, Mantis AJ and Trakatellis AG (1994) Rapid, sensitive and specific thiobarbituric acid method for measuring lipid peroxidation in animal tissue, food, and feedstuff samples. Journal of Agricultural and Food Chemistry. 42(9): 1931-1937.
4. Bouton P, Harris PT and Shorthose W (1971) Effect of ultimate pH upon the water‐holding capacity and tenderness of mutton. Journal of Food Science. 36(3): 435-439.
5. Buckley D, Morrissey P and Gray J (1995) Influence of dietary vitamin E on the oxidative stability and quality of pig meat. Journal of Animal Science. 73(10): 3122-3130.
6. Chang X and Mowat D (1992) Supplemental chromium for stressed and growing feeder calves. Journal of Animal Science. 70(2): 559-565.
7. Foucaud L, Niot I, Kanda T and Besnard P (1998) Indirect dexamethasone down-regulation of the liver fatty acid-binding protein expression in rat liver. Biochimica et Biophysica Acta (BBA). Lipids and Lipid Metabolism. 1391(2): 204-212.    
8. Gao J, Lin H, Song Z and Jiao H (2008) Corticosterone alters meat quality by changing pre-and postslaughter muscle metabolism. Poultry Science. 87(8): 1609-1617.
9. Gutteridge J and Halliwell B (1999) Free radicals in biology and medicine. Oxford University Press, New York.
10. Home C (2005) Chromium nutrition of livestock species. Nutrition Abstracts and Reviews. Series B, Livestock Feeds and Feeding.
11. Laudicina DC and Marnett LJ (1990) Enhancement of hydroperoxide-dependent lipid peroxidation in rat liver microsomes by ascorbic acid. Archives of Biochemistry and Biophysics. 278(1): 73-80.
12. Lauridsen C, Buckley D and Morrissey P (1997) Influence of dietary fat and vitamin E supplementation on α-tocopherol levels and fatty acid profiles in chicken muscle membranal fractions and on susceptibility to lipid peroxidation. Meat Science 46(1): 9-22.
13. Lin H, Decuypere E and Buyse J (2006) Acute heat stress induces oxidative stress in broiler chickens. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology. 144(1): 11-17.
14. Lin H, Sui S, Jiao H, Buyse J and Decuypere E (2006) Impaired development of broiler chickens by stress mimicked by corticosterone exposure. Comparative Biochemistry and Physiology Part A. Molecular and Integrative Physiology. 143(3): 400-405.
15. Lin H, Gao J, Song Z and Jiao H (2009) Corticosterone administration induces oxidative injury in skeletal muscle of broiler chickens. Poultry Science. 88(5): 1044-1051.
16. Linder M (1985) Nutrition and Metabolism of the Trace Elements.  nutrition, biochemistry and metabolism of the trace element. Elserier publishing house, New York.  p. 151.
17. Malheiros R, Moraes V, Collin A, Decuypere E and Buyse J (2003) Free diet selection by broilers as influenced by dietary macronutrient ratio and corticosterone supplementation. 1. Diet selection, organ weights, and plasma metabolites. Poultry Science. 82(1): 123-131.
18. McCarty M (1993) Homologous physiological effects of phenformin and chromium picolinate. Medical Hypotheses. 41(4): 316-324.
19. National Research Council (1994) Nutrient Requirements of Poultry. 9th Rev. Edn. National    Academy Press, Washington, DC.
20. Onderci M, Sahin K, Sahin N, Cikim G, Vijaya J and Kucuk O (2005) Effects of dietary combination of chromium and biotin on growth performance, carcass characteristics, and oxidative stress markers in heat-distressed Japanese quail. Biological Trace Element Research. 106(2): 165-176.
21. Preuss H, Grojec P, Lieberman S and Anderson R (1997) Effects of different chromium compounds on blood pressure and lipid peroxidation in spontaneously hypertensive rats. Clinical Nephrology. 47(5): 325-330.
22. Puvadolpirod S and Thaxton J (2000) Model of physiological stress in chickens 1. Response parameters. Poultry Science. 79(3): 363-369.
23. Remignon H, Mills A, Guemene D, Desrosiers V, Garreau-Mills M, Marche M and Marche G (1998) Meat quality traits and muscle characteristicsin high or low fear lines of Japanese quails (Coturnix japonica) subjected to acute stress. British Poultry Science. 39(3): 372-378.
24. Richardson RD, Boswell T, Woods SC and Wingfield JC (2000) Intracerebroventricular corticotropin-releasing factor decreases food intake in white-crowned sparrows. Physiology and Behavior. 71(1): 213-216.
25. Sahin N, Akdemir F, Tuzcu M, Hayirli A, Smith M and Sahin K (2010) Effects of  supplemental chromium sources and levels on performance, lipid peroxidation and proinflammatory markers in heat-stressed quails. Animal Feed Science and Technology. 159(3): 143-149.
26. Sahin K, Sahin N, Onderci M, Gursu F and Cikim G (2002) Optimal dietary concentration of chromium for alleviating the effect of heat stress on growth, carcass qualities, and some serum metabolites of broiler chickens. Biological Trace Element Research. 89(1): 53-64.
27. Sams A (1999) Meat quality during processing. Poultry Science. 78(5): 798-803.
28. Sandercock D, Hunter R, Nute G, Mitchell M and Hocking P (2001) Acute heat stress-induced alterations in blood acid-base status and skeletal muscle membrane integrity in broiler chickens at two ages: Implications for meat quality. Poultry Science. 80(4): 418-425.
29. SAS (2003) Institute, SAS Users Guide: Statistics Version 9.1. SAS institute Inc, Cary, NC.
30. Tankson J, Vizzier-Thaxton Y, Thaxton J, May J and Cameron J (2001) Stress and nutritional quality of broilers. Poultry Science. 80(9): 1384-1389.
31. Toghyani M, Khodami A and Gheisari AA (2008) Effect of organic and inorganic chromium supplementation on meat quality of heat-stressed broiler chicks. American Journal of Animal and Veterinary Sciences. 3(2).???
32. Virden W, Thaxton J, Corzo A, Dozier W and Kidd M (2007) Evaluation of models using corticosterone and adrenocorticotropin to induce conditions mimicking physiological stress in commercial broilers. Poultry Science. 86(12): 2485-2491.
33. Young JF, Rosenvold K, Stagsted J, Steffensen CL, Nielsen JH and Andersen HJ (2003) Significance of preslaughter stress and different tissue PUFA levels on the oxidative status and stability of porcine muscle and meat. Journal of Agricultural and Food Chemistry. 51(23): 6877-6881.
34. Zha LY, Zeng JW, Chu XW, Mao LM and Luo HJ (2009) Efficacy of trivalent chromium on growth performance, carcass characteristics and tissue chromium in heat‐stressed broiler chicks. Journal of the Science of Food and Agriculture. 89(10): 1782-1786.