نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد، گروه علوم دامی، دانشکدۀ کشاورزی، دانشگاه بیرجند، بیرجند، ایران

2 استاد گروه علوم دامی، دانشکدۀ کشاورزی، دانشگاه بیرجند، بیرجند، ایران

3 دانشیار گروه علوم دامی، دانشکدۀ کشاورزی، دانشگاه بیرجند، بیرجند، ایران

چکیده

همبستگی بین ارزش اصلاحی شیر روزآزمون تولیدی و شیر روزآزمون تصحیح‌شده برای انرژی با استفاده از 774013 رکورد مربوط به 88456 رأس گاو هلشتاین زایش اول که در سال‏های 1376 تا 1388 در 165 گله (از شش استان) زایش داشتند، بررسی شد. تجزیه و تحلیل ژنتیکی صفات ازطریق مدل روزآزمون با تابعیت ثابت انجام شد. در این مدل متغیرهای گله، سال زایش، ماه تولید، سن در هنگام تولید، نوع ژنوتیپ گاو (زینه و اصیل)، نوع اسپرم (داخلی و خارجی)، تابع چندجمله‏ای، تأثیرات تصادفی ژنتیکی افزایشی، و محیطی دائمی گاوها منظور شد. میانگین ارزش اصلاحی دختران در هنگام ارزیابی ژنتیکی براساس دو صفت فوق با یکدیگر اختلاف معنی‏دار داشت (0001/0P<). همبستگی بین ارزش‏ اصلاحی شیر تولیدی و شیر تصحیح‌شده برای انرژی، هنگام انتخاب کل دختران ازنظر ارزش اصلاحی شیر تصحیح‌شده برای انرژی، بیشترین (92/0) و هنگام انتخاب فقط 10 دختر برتر ازنظر ارزش اصلاحی شیر تصحیح‌شده برای انرژی، کمترین (27/0) مقدار بود. بنابراین، در صورت استفاده از رکوردهای شیر روزآزمون تصحیح‌شده برای انرژی به‏جای رکوردهای شیر تولیدی، تغییر در رتبه‏بندی ماده‌گاوهای برتر ژنتیکی، بسیار زیاد است.

کلیدواژه‌ها

عنوان مقاله [English]

Genetic evaluation of Iranian first lactation Holstein cows based upon crude and energy-corrected test day milk records

نویسندگان [English]

  • Mahshid Mohammadpanah 1
  • Homayoun Farhangfar 2
  • Moslem Bashtani 3

1 M.Sc., Department of Animal Science, Faculty of Agriculture, University of Birjand, Birjand, Iran

2 Professor, Department of Animal Science, Faculty of Agriculture, University of Birjand, Birjand, Iran

3 Associate Professor, Department of Animal Science, Faculty of Agriculture, University of Birjand, Birjand, Iran

چکیده [English]

Correlation between breeding value of crude milk (CM) and energy-corrected milk (ECM) was studied based on a total of 774,013 test day records belongs to 88,456 first-parity Holsteins dairy cattle calving during 1997-2009 in 165 herds (from six provinces). Genetic analysis of the traits was carried out by a fixed regression test day model. In the model, effects of herd, calving year, production month, production age, type of cow genotype (grade or pure Holstein), sperm type, polynomial function, as well as additive genetic and permanent environmental random effects of the cows were included. Mean breeding values as the genetic evaluation is undertaken based on two traits were statistically significant (P<0.0001). Correlation between breeding value of CM and ECM was the highest (0.92) when all the cows were selected based upon breeding value for ECM and was the lowest (0.27) as 10 top cows were selected based upon breeding value for ECM. It could be therefore concluded that in the case of using ECM instead of CM records, change in the ranking of the elite cows is appreciable.

کلیدواژه‌ها [English]

  • Breeding value
  • energy-corrected milk
  • Genetic evaluation
  • Holstein cow
  • test day model
1 . امام جمعه کاشان ن، بیگ‏زاده خلفلو ف، غفوری کسبی ف و اسکندری‏نسب م (1386) بررسی صفات تولید شیر و ماندگاری گاو نژاد هلشتاین در مجتمع کشت و صنعت مغان. فن‏آوری‏های نوین کشاورزی. 1(1): 88-64.
2 . خالقی م.ح، زره‏داران س، حسنی س، فرهنگ‏فر ه و اقبال ع (1392) تجزیه ژنتیکی صفت تولید شیر توسط مدل روزآزمون با تابعیت ثابت و تصادفی در گاوهای شیری هلشتاین استان یزد. پژوهش در نشخوارکنندگان. 1(1): 30-13.
3 . شمشیرگران ی، اسلمی‏نژاد ع، فرهنگ‏فر ه و طهمورث‏پور م (1390) مقایسه دو مدل روزآزمون با تابعیت ثابت و تصادفی در آنالیز ژنتیکی صفت تولید شیر گاوهای هلشتاین استان خراسان رضوی. پژوهش‏های علوم دامی ایران. 3(1): 73-67.
4 . فرهنگ‏فر ه و رضایی ه (1383) مطالعه ژنتیکی صفت تولید شیر در آزمون ماهیانه گاوهای هلشتاین ایران با استفاده از مدل رگرسیون تصادفی. طرح پژوهشی. دانشکده کشاورزی. دانشگاه بیرجند.
 
5 . Ali TE and Schaeffer LR (1987) Accounting for covariance’s among test day milk yields in dairy cows. Animal Science. 67: 637-644.
6 . Banos G, Coffey MP and Brotherstone S (2005) Modeling daily energy balance of dairy cows in the first three lactations. Dairy Science. 88: 2226-2237.
7 . Banos G, Coffey MP, Wall E and Brotherstone S (2006) Genetic relationship between first-lactation body energy and later-life udder health in dairy cattle. Dairy Science. 89: 2222-2232.
8 . Buttchereit N, Stamer E, Junge W and Thaller G (2011) Genetic relationships among daily energy balance, feed intake, body condition score, and fat to protein ratio of milk in dairy cows. Dairy Science. 94: 1586-1591.
9 . Collard BL, Boettcher PJ, Dekkers JCM, Peticlerc D and Schaeffer LR (2000) Relationships between energy balance and health traits of dairy cattle in early lactation. Dairy Science. 83: 2683-2690.
10 . Conington J, Gibbons J, Haskell MJ and Bunger L (2010) the use of breeding to improve animal welfare. Proceedings of the 9th World Congress on "Genetics Applied to Livestock Production". Leipzig, Germany.
11 . Ghavi Hossein-Zadeh N (2012) Estimation of genetic parameters and trends for energy corrected 305-d milk yield in Iranian Holsteins. Archiv Tierzucht. 55(5): 420-426.
12 . Huttmann H, Stamer E, Junge W, Thaller G and Kalm E (2008) Analysis of feed intake and energy balance of high-yielding first lactating Holstein cows with fixed and random regression models. Animal. 3: 181-188.
13 . Liduare M, Mantysaari EA and Stranden I (2003) Comparison of test-day models for genetic evaluation of production traits in dairy cattle. Livestock Production Science. 79: 73-86.
14 . Liinamo AE, Mantysaari P and Mantysaari EA (2010) Genetic parameters for feed intake, production and extent of negative energy balance in Nordic Red dairy cattle. In 9th World Congress on Genetics Applied to Livestock Production (WCGALP). Leipzig, Germany. No. 810.
15 . Madsen P and Jensen J (2007) A User's Guide to DMU (A Package for AnalysingMultivariate Mixed Models). Version 6, release 4.7.University of Aarhus, Faculty Agricultural Sciences (DJF), Department of Genetics and Biotechnolog, Research Centre Foulum.
16 . Mavrogenis AP and Papachristoforou CHR (1988) Estimation of the Energy Value of Milk and Prediction of Fat-Corrected Milk Yield in Sheep and Goats. Small Ruminant Research. 1: 229-236.
17 . Miglior F, Muir BL and Van Doormaal BJ (2005) Selection indices in Holstein Cattle of various countries. Dairy Science. 88: 1255-1263.
18 . Mostert BE, Theron HE, Kanfer FHJ and Van Marle-Koster E (2006) Test-day models for South African dairy cattle for participation in international evaluations. Animal Science. 36: 58-70.
19 . Pires AV, East ridge ML and Firkins JL (1996) Roasted soybeans, blood meal, and tallow as sources of fat and ruminally undegradable protein in the diets of lactating cows. Dairy Science. 79: 1603-1610.
20 . Pryce JE, Veerkamp RF, Thompson R, Hill WG and Simm G (1997) Genetic aspects of common health disorders and measures of fertility in Holstein Friesian dairy cattle. Animal Science. 65: 353-360.
21 . Roman RM, Wilcox CJ and Littell RC (1999) Genetic trends for milk yield of Jerseys and correlated changes in productive and reproductive performance. Dairy Science. 82: 196-204.
22 . Sitkowska B and Piwczynski D (2011) Impact of successive lactation, year, season of calving and test milking on cow’s milk performance of the Polish Holstein-Friesian Black-and-White breed. Central European Agriculture. 12: 283-293.

23 . Takma C and Akbas Y (2007) Estimates of genetic parameters for test day milk yields of a Holstein Friesian herd in Turkey with random regression models. ArchiveTierzucht Dummerstorf. 50: 327-336.

24 . Zar J (1996) Biostatistical Analysis. Third Edition, Prentice Hall Inc. New Jersey. P. 718.