تأثیرپذیری هضم الیاف، رفتار تغذیه‌ای و الگوی تغییرات اسیدهای چرب فرار شکمبه از دفعات تغذیه منابع گوناگون پروتئین

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری گروه علوم دامی، دانشکدۀ کشاورزی، دانشگاه زنجان

2 استادیار گروه علوم دامی، دانشکدۀ کشاورزی، دانشگاه زنجان

3 استادیار گروه مهندسی علوم دام، دانشکدۀ علوم و مهندسی کشاورزی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران

4 استاد گروه علوم دامی، دانشکدۀ کشاورزی، دانشگاه زنجان

چکیده

در تحقیق حاضر، از چهار رأس گاو هلشتاین دارای فیستولۀ شکمبه در طرح مربع لاتین با چهار دورۀ‏ 21روزه (شامل دو هفته دورۀ عادت‏پذیری به جیره‌ها و یک هفته جمع‏آوری داده‌ها) استفاده شد. تیمارها شامل 1. تغذیه با جیرۀ کاملاً مخلوط یک‌بار در وعدۀ صبح، 2. تغذیه با بخشی از سویا در وعدۀ عصر، 3. تغذیه با بخشی از اوره در وعدۀ عصر، و 4. تغذیه با بخشی از پودر ماهی در وعدۀ عصر بود. گاوها در سطح نگهداری تغذیه شدند. تغذیۀ منابع پروتئینی در وعدۀ عصر فعالیت نشخوار را افزایش داد (05/0P<). قابلیت هضم ظاهری مادۀ خشک و مادۀ آلی در گاوهای تغذیه‌شده با اوره در وعدۀ عصر در مقایسه با گاوهایی که یک‌بار تغذیه شدند، بیشتر بود (05/0P<). تغذیۀ همۀ‏ منابع پروتئین در وعدۀ عصر باعث افزایش قابلیت هضم ظاهری الیاف نامحلول در شویندۀ خنثی شد (05/0P<). میانگین تولید کل اسیدهای چرب فرار و نسبت مولی هیچ‏کدام از اسیدهای چرب فرار تحت تأثیر نحوۀ تغذیۀ منابع گوناگون پروتئین قرار نگرفتند. اثر تیمارهای آزمایشی بر میانگین اسیدیتۀ شکمبه و نیتروژن آمونیاکی شکمبه معنی‏دار نبود. براساس نتایج تحقیق حاضر، افزایش دفعات تغذیۀ منابع پروتئین قابل تجزیه در شکمبه باعث بهبود هضم الیاف و فعالیت جویدن در گاوهای فیستولۀ هلشتاین غیرشیرده می‏شود.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of feeding frequency of protein sources on fiber digestibility, feeding behaviors and rumen metabolites of Holstein cows

نویسندگان [English]

  • Moustafa Hajilou 1
  • Hamid Reza Mirzaei Alamouti 2
  • Mehdi Ganjkhanlou 3
  • Hamid Amanlou 4
1 Ph.D. Candidate, Department of Animal Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
2 Assistant Professor, Department of Animal Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
3 Assistant Professor, Department of Animal Science, Faculty of Agricultural Sciences and Engineering, College of Agrituclture and Natural Resources, University of Tehran, Karaj, Iran
4 Professor, Department of Animal Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
چکیده [English]

Four ruminally-cannulated Holstein cows were used in a 4 × 4 Latin square changeover design within periods of 21 days to evaluate effects of feeding frequency of different sources of rumen degradable nitrogen on total tract digestibility of nutrients, feeding behaviors, rumen and blood metabolites of Holstein cows. Treatments were: 1) control diet which was as total mixed ration (TMR) offered once daily in the morning (08:00), 2) control diet in which a part of its soybean was offered at 19:00, 3) control diet in which a part of its urea was offered at 19:00 and 4) control diet in which a part of its fish meal was offered at 19:00. Rumination time increased in cows fed twice daily with protein sources (P<0.05). Total tract digestibility of dry matter and organic matter were higher in cows received urea at the evening time. Total tract digestibility of neutral detergent fiber increased with feeding all sources of protein at the evening time (P<0.05). Molar proportion of volatile fatty acids, rumen pH and rumen ammonia concentration were not affected by feeding time of protein sources. The results indicated that increasing delivery of rumen degradable nitrogen sources improved dry matter and fiber digestibility and chewing activity of non-lactating Holstein dairy cows.

کلیدواژه‌ها [English]

  • corn silage
  • Fish meal
  • Holstein cows
  • soybean meal
  • Urea
1. Alvarez Almora EG, Huntington GB and Burns JC (2012) Effects of supplemental urea sources and feeding frequency on ruminal fermentation, fiber digestion, and nitrogen balance in beef steers. Animal Feed Science and Technology. 171: 136-145.
2 . Association of Official Analytical Chemisis (2000) Official methods of analysis. 17th ed. AOAC, Arlington, VA.
3 . Broderick GA and Kang JH (1980) Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. Journal of Dairy Science. 63: 64-75.
4 . Broderick GA and Reynal SM (2009) Effect of source of rumen-degraded protein on production and ruminal metabolism in lactating dairy cows. Journal of Dairy Science. 92: 2822-2834.
5 . Ceconi I, Ruiz-Moreno MJ, DiLorenzo N, DiCostanzo A and Crawford GI (2015) Effect of urea inclusion in diets containing corn dried distillers grains on feedlot attle performance, carcass characteristics, ruminal fermentation, total tract digestibility, and purine derivatives-to-creatinine index. Journal of Animal Science. 93: 357-369.
6 . Clark JH, Klusmeyer TH and Cameron MR (1992) Symposium: Nitrogen metabolism and amino acid nutrition in dairy cattle: Microbial protein synthesis and flows of nitrogen fractions to the duodenum of dairy cows. Journal of Dairy Science. 75: 2304-2323.
7 . Currier TA, Bohnert DW, Falck SJ, Schauer CS and Bartle SJ (2004) Daily and alternate-day supplementation of urea or biuret to ruminants consuming low-quality forage: III. Effects on ruminal fermentation characteristics in steers. Journal of Animal Science. 82: 1528-1535.
8 . DeVries TJ, Keyserlingk MAG and Beauchemin KA (2005) Frequency of feed delivery affects the behavior of lactating dairy cows. Journal of Dairy Science. 88: 3553-3562.
9 . Ferrell CL, Kreikemeier KK and Freetly HC (1999) The effect of supplemental energy, nitrogen, protein on feed intake, digestibility, nitrogen flux across the gut and liver in sheep fed low-quality forage. Journal of Animal Science. 77: 3353-3364.
10 . Flis SA and Wattiaux MA (2005) Effects of Parity and Supply of Rumen-Degraded and Undegraded Protein on Production and Nitrogen Balance in Holsteins cows. Journal of Dairy Science. 88: 2096-2106.
11 . Fox DG, Tedeschi LO, Tylutki TP, Russell JB, Van Amburgh ME, Chase LE, Pell AN and Overton TR (2004) The cornell Net Carbohydrate and Protein System model for evaluating herd nutrition and nutrient excretion. Animal Feed Science and Technology. 112: 29-78.
12 . Griswold KE, Apgar GA, Bouton J and Firkins JL (2003) Effects of urea infusion and ruminal degradable protein concentration on microbial growth, digestibility, and fermentation in continuous culture. Journal of Animal Science. 81: 329-336.
13 . Huhtanen P, Nousiainen J and Rinne M (2006) Recent developments in forage evaluation with special reference to practical applications. Agriculture Food Science. 15: 293-323.
14 . Korhonen M, Vanhatalo A and Huhtanen P (2002) Effect of Protein Source on Amino Acid Supply, Milk Production, and Metabolism of Plasma Nutrients in Dairy Cows Fed Grass Silage. Journal of Dairy Science. 85: 3336-3351.
15 . Kozloski GV, Cadorin RL, Harter CJ, Oliveira L, Alves TP, Mesquita FR and Castagnino DS (2009) Effect of suplemental nitrogen source and feeding frequency on nutrient supply to lambs fed a kikuyu grass (Pennisetum clandestinum) hay-based diet. Small Ruminant Research. 81: 112-118.
16 . Maekawa M, Beauchemin KA and Christensen DA (2002) Effect of concentrate level and feeding management on chewing activities, saliva production, and ruminal pH of lactating dairy cows. Journal of Dairy Science. 85: 1165-1175.
17 . Mertens DR (1994) Regulation of forage intake. In: Forage Quality, Evaluation, and Utilization. Fahey GC, Colins Jr M, Mertens DR and Moser LE. Pp. 450-493.
18 . National Research Council. NRC (2001) Nutrient Requirements of Dairy Cattle. 7th rev. ed. Natl. Acad. Sci., Washington, DC.
19 . Phillips CJC and Rind MI (2001) The effects of frequency of feeding a total mixed ration on the production and behavior of dairy cows. Journal of Dairy Science. 84: 1979-1987.
20 . Plaizier JC, Krause DO, Gozho GN and McBride BW (2008) Subacute ruminal acidosis in dairy cows: The physiological causes, incidence and consequences. Veterinary. 176: 21-31.
21 . Robinson PH and McQueen RE (1994) Influence of supplemental protein source and feeding frequency on rumen fermentation and performance in dairy cows. Journal of Dairy Science. 77: 1340-1353.
22 . Robinson PH, Gill M and Kennelly JJ (1996) Influence of Time of Feeding a Protein Meal on Ruminal Fermentation and Forestomach Digestion in Dairy Cows. Journal of Dairy Science. 80: 1366-1373.
23 . Robles VL, González A, Ferret A, Manteca X and Calsamiglia S (2007) Effects of feeding frequency on intake, ruminal fermentation, and feeding behavior in heifers fed high-concentrate diets. Journal of Animal Science. 85: 2538-2547.
24 . Russell B and Hespell RB (1981) Microbial rumen fermentation. Journal of Dairy Science. 64: 1153-1162.
25 . SAS Institute (2004) User's Guide. Version 9.1: Statistics. SAS Institute, Cary, NC.
26 . Van Keulen J and Young BA (1977) Acid insoluble ash as a natural marker for digestibility studies. Journal of Dairy Science. 44: 282-287.
27 . Van Soest PJ (1994) Nutritional Ecology of the Ruminant. 2nd ed. Cornell University Press, Comstock Publications, New York, NY, USA, 476 Pp.
28 . Yang WZ, Beauchemin KA and Rode LM (2000) Effects of barley grain processing on extent of digestion and milk production of lactating cows. Journal of Dairy Science. 83: 554-568.