اثر متقابل ژنوتیپ و محیط بر صحت ارزیابی ژنومی صفات تولید شیر گاوهای هلشتاین در ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه علوم دامی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران، کرج. ایران

2 استاد، گروه علوم دامی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران، کرج. ایران

3 پژوهشگر، گروه علوم دامی، دانشگاه فلوریدا، گینزویل، آمریکا.

چکیده

به منظور بررسی صحت ارزیابی ژنومی صفات تولید شیر گاوهای هلشتاین ایران در حضور اثر متقابل ژنوتیپ و محیط، از تعداد 344170، 135000و 156840 رکورد روزانه به‌ترتیب برای مقدار شیر، چربی و پروتئین در دوره شیردهی اول از 34417، 13500 و 15684 راس گاو ماده و 1935 پدر ژنوتیپ شده بر اساس نشانگرهای SNP استفاده شد. این داده‌ها طی سال‌های 1392 لغایت 1397 از بانک اطلاعات مرکز اصلاح نژاد دام و بهبود تولیدات دامی کشور استخراج گردید. جهت در نظر گرفتن اثر متقابل ژنوتیپ و محیط از متوسط شاخص دما-رطوبت نسبی (THI) طی سه روز قبل از روز رکوردگیری، به‌عنوان عوامل محیطی با خصوصیت پیوسته، مربوط به 35 ایستگاه هواشناسی در مجاورت 139 گله گاو هلشتاین با رکورد روز آزمون از 13 استان استفاده شد. مولفه های (کو)واریانس از طریق مدل تابعیت تصادفی یک صفته با استفاده از نرم افزار AIREMLF90 و در تابع لژاندر مرتبه دو برای روزهای شیردهی و THI، برآورد گردید. نتایج نشان داد تغییر THI طی دوره شیردهی، منجر به تغییر مقدار واریانس ژنتیکی افزایشی می‌شود. تغییرات وراثت‌پذیری صفات تولید شیر در طول دوره شیردهی نیز مشابه واریانس ژنتیکی افزایشی بود. آنالیز اعتبار سنجی برای مقایسه صحت پیش بینی شده در مدل‌هایی با و بدون THI منجر به افزایش صحت با قراردادن اطلاعات ژنومی و بهبود نااریبی با وجود THI در مدل می‌شود. با توجه به تغییر عملکرد دختران گاوهای نر طی روزهای شیردهی و با مقادیر مختلف THI، برای انتخاب گاونر در شرایط مختلف باید اثر متقابل ژنوتیپ و محیط در نظر گرفته شود.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Genotype by Environment Interaction on Accuracy of Genomic Evaluation for Milk Production Traits in Holstein Cattle of Iran

نویسندگان [English]

  • Behrouz Mohammad Nazari 1
  • Ardeshir Nejati Javaremi 2
  • Mohammad Moradi Shahre Babak 2
  • Rostam AbdolahiArpanahi 3
1 Deputy of Animal Breeding and Improvement Center ,Ministry of Jihad Agriculture
2 Professor, Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
3 Assistant Professor, University of Tehran, Aborayhan Campus
چکیده [English]

In order to evaluate the effect of genotype by environment interaction on production traits of Holstein cattle of Iran, first lactation test day records of 344170, 135000 and 156840 of milk, fat and protein yield on 34417, 13500 and 15684 cows and SNP markers of 1935 genotyped bulls were used. The production data were retrieved from the Animal Breeding Center and Productions Improvement of Iran’s database which were collected from 2013 to 2018. To consider the interaction of genotype and environment, mean of temperature-humidity index (THI) in three days before each test day records as continuous environmental effect were retrieved from the 35 closest meteorological stations in the vicinity of 139 Holstein herds from 13 provinces. Variance and covariance components were estimated through a single-trait random regression model with orthogonal Legendre polynomials of second order for days in milk and THI using AIREMLF90 software. The results showed that changes in THI across lactation led to
fluctuations in additive genetic variance over time. The change in heritability of milk production traits over lactation followed the same trend as additive genetic variance. The results from cross-validation analysis showed that including genomic information into the predictive model, increased prediction accuracy and including THI information increased unbiasedness. Due to the changes in milk production of daughters of bulls across days and THI , genotype by environment interaction should be considered when selecting bulls under different conditions.

کلیدواژه‌ها [English]

  • cross-validation
  • Dairy cattle
  • Genomic Evaluation
  • random regression model
  • Temperature-humidity index
1. Bernabucci U, Biffani S, Buggiotti L, Vitali A,
Laceter اa N, and Nardone A (2014) The effects
of heat stress in Italian Holstein dairy cattle.
Journal of Dairy Science, 97(1): 471-486.
2. Bohlouli M, Alijani S, Naderi S, Yin T, and
König S (2019) Prediction accuracies and genetic
parameters for test-day traits from genomic and
pedigree-based random regression models with or
without heat stress interactions. Journal of Dairy
Science, 102(1): 488-502.
3. Forneris NS, Steibel J, Legarra A, Vitezica Z,
Bates R, Ernst C, Basso A and Cantet R (2016)
A comparison of methods to estimate genomic
relationships using pedigree and markers in
livestock populations. Journal of Animal
Breeding and Genetics, 133: 452-462.
4. Hammami H, Rekik B and Gengler N (2009)
Genotype by environment interaction in dairy
/Interactions entre génotype et environnement
chez les bovins laitiers. Biotechnologie,
Agronomie, Société et Environnement,13(1): 155.
5. Hayes BJ, Bowman PJ, Chamberlain AJ, Savin
K, Van Tassell CP, Sonstegard T and Goddard
ME (2009) A validated genome wide association
study to breed cattle adapted to an environment
altered by climate change. PLoS One, 4:e6676.
6. Hijmans RJ, Williams E, Vennes C and Hijman
MRJ (2016) Package‘geosphere’. Accessed Nov.
19, 2017. https: / / cran .r-project .org/ web/
packages/ geosphere/ index .html.
7. Kelly CF and Bond TE (1971) Bioclimatic
Factors and Their Measurement: A Guide to
Environmental Research on Animals. National
Academy Press, Washington, DC.
8. Lillehammer M, Árnyasi M, Lien S, Olsen HG,
Sehested E, Ødegård J and Meuwissen THE
(2007b) A genome scan for quantitative trait
locus by environment interactions for production
traits. Journal of Dairy Science, 90: 3482-3489.
9. Meuwissen THE, Hayes B and Goddard ME
(2001) Prediction of total genetic value using
genome-wide dense marker maps. Genetics,
157: 1819-1829.
10. Misztal I, Tsuruta S, Strabel T, Auvray B,
Druet T and Lee DH (2002) BLUPF90 and
related programs. Communication no. 28-07.
In: Proceedings of the 7th World Congress for
the Genetic Applied Livestock Production,
Montpellier, France.
11. Misztal I, Legarra A and Aguilar I (2014)
Using recursion to compute the inverse of the
genomic relationship matrix. Journal of Dairy
Science, 97(6): 3943-3952.
12. Nejati-Javaremi A, Smith C and Gibson JP
(1997) Effect of Total Allelic Relationship on
Accuracy of Evaluation and Response to
Selection. Journal of Animal Science, 75(June):
1738-1745.
13. Nishiura A, Sasaki O, Aihara M, Takeda H and
Satoh M (2015) Genetic analysis of fat-toprotein
ratio, milk yield and somatic cell score
of Holstein cows in Japan in the first three
lactations by using a random regression model.
Journal of Animal Science, 86: 961-969.
14. Oliveira HR, Brito LF, Silva FF, Lourenco
DAL, Jamrozik J and Schenkel FS (2019)
Genomic prediction of lactation curves for
milk, fat, protein and somatic cell score in
Holstein cattle. Journal of Dairy Science,
102(1): 452-463.
15. Pérez-Cabal MA, Vazquez AI, Gianola D,
Rosa GJM and Weigel KA (2012) Accuracy of
genome-enabled prediction in a dairy cattle
population using different cross-validation
layouts. Frontiers in Genetics, 3: 27.
16. Purcell S, Neale B, Todd-Brown K, Thomas L,
Ferreira MAR, Bender D, Maller J, Sklar P, de
Bakker PIW, Daly MJ and Sham PC (2007)
PLINK: A tool set for whole-genome association
and population-based linkage analyses. American
Journal of Human Genetics, 81: 559-575.
17. Santana M, Bignardi A, Pereira R, Stefani G
and Faro LEl (2017) Genetics of heat tolerance
for milk yield and quality in Holsteins. Animal,
11: 4-14.
18. Saatchi M, McClure MC, McKay SD, Rolf
MM, Kim J, Decker JE, Taxis TM, Chapple
RH, Ramey HR, Northcutt SL, Bauck S,
Woodward B, Dekkers JCM, Fernando RL,
Schnabel RD, Garrick DJ and Taylor JF (2011)
Accuracies of genomic breeding values in
American Angus beef cattle using K-means
clustering for cross-validation. Genetics
Selection Evolution, 43: 40.
19. Sánchez JP, Misztal I, Aguilar I, Zumbach B
and Rekaya R (2009) Genetic determination of
the onset of heat stress on daily milk
production in the US Holstein cattle. Journal
of Dairy Science, 92(8): 4035-4045.
20. Sargolzaei M, Chesnais JP and Schenkel FS
(2011) FImpute-An efficient imputation
algorithm for dairy cattle populations. Journal
of Dairy Science, 94(1): 421.
21. Tiezzi F, de los Campos G, Parker Gaddis K
and Maltecca C (2017) Genotype by
environment (climate) interaction improves
genomic prediction for production traits in US
Holstein cattle. Journal of Dairy Science, 100.
22. VanRaden PM and Sullivan PG (2010)
International genomic evaluation methods for
dairy cattle. Genetics Selection Evolution, 42(1):
7.
23. Wiggans GR, Sonstegard TS, VanRaden PM,
Matukumalli LK, Schnabel RD, Taylor JF,
Schenkel FS and Van Tassell CP (2009)
Selection of single nucleotide polymorphisms
and quality of genotypes used in genomic
evaluation of dairy cattle in the United States
and Canada. Journal of Dairy Science, 92:
3431-3436.
24. Yao C, De Los Campos G, VandeHaar M,
Spurlock D, Armentano L, Coffey M, De Haas
Y, Veerkamp R, Staples C and Connor E (2017)
Use of genotype×environment interaction
modelto accommodate genetic heterogeneity for
residual feed intake, dry matter intake, net energy
in milk, and metabolic body weight in dairy
cattle. Journal of Dairy Science, 00: 2007-2016.
25. Yin T and Konig S (2016) Genomics for
phenotype prediction and management
purposes. Animal Frontiers, 6: 65-72