نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد.گروه علوم دامی، دانشگاه اراک، اراک، ایران

2 استادیار. گروه علوم دامی. دانشکده کشاورزی و محیط زیست. دانشگاه اراک. ایران.

3 استادیار. گروه علوم دامی. دانشکده کشاورزی، دانشگاه هرات، هرات، افغانستان

چکیده

هدف از این تحقیق شناسایی تنوع تعداد کپی (CNV) در سطح ژنوم یکی از نژادهای گوسفند کشور افغانستان به نام نژاد عربی و بررسی ارتباط مناطق ژنومی حامل این نوع تنوع، با مسیرهای بیولوژیکی مختلف بود. برای این منظور 15 نمونه حیوان با سن های مختلف از محیط پرورش این دام ها در استان هرات افغانستان جمع آوری و سپس با استفاده از آرایه هایIllumina Ovine 50kSNP تعیین ژنوتیپ شدند. پس از اجرای مراحل مختلف کنترل کیفیت داده ها، شناسایی تنوع CNV در سطح ژنوم این حیوانات با استفاده از مدل Hidden Markov نرم افزار PennCNV (نسخه 1/0/3) انجام شد. نتایج حاصل نشان داد که تمام حیوانات مورد مطالعه دارای تغییر در تعداد کپی در سطح ژنوم بودند. در مجموع، 306 تنوع CNV در تمام کروموزوم های اتوزومی شناسایی شد. کل طول توالی این مناطق ژنومی معادل 128 مگاجفت باز و متوسط CNV به ازای هر گوسفند 20/4 مگا جفت باز بودند. پس از ادغام مناطق همپوشان در مجموع 286 ناحیه CNVR شناسایی شد. این مناطق ژنومی به منظور بررسی مسیرهای متابولیکی مرتبط با آن ها مورد ارزیابی های بیوانفورماتیکی قرار گرفت. نتایج مطالعه هستی شناسی، نشان داد که بسیاری از این مناطق با مسیرهای بیولوژیکی مختلفی مانند باروری و عملکرد تولیدمثلی، خصوصیات لاشه و وزن بدن، توسعه سیستم ایمنی و سیستم اسکلتی-ماهیچه ای در ارتباط هستند.

کلیدواژه‌ها

عنوان مقاله [English]

Genomic detection of copy number variations (CNVs) in Arabic sheep breed of Afghanistan using Ovine 50k SNPChip array

نویسندگان [English]

  • Roqiah Mahmodi 1
  • Mohammad Hossein Moradi 2
  • Amir Hossein KhaltAbadi Farahani 2
  • Mohammad Osman Karimi 3

1 Department of Animal Science, Arak Univeristy, Arak, Iran

2 Department of Animal Science, Arak University, Arak, Iran

3 Herat University, Herat, Afghanistan

چکیده [English]

The aim of this study was to identify the genome-wide copy number variations (CNV) in one of the sheep breeds in Afghanistan named Arabic breed, and to study the associations between these regions containing this kind of diversity with different biological pathways. For this purpose, 15 animal samples from different ages were collected from their natural rearing environment in Herat province of Afghanistan and then were genotyped using Illumina Ovine 50kSNP array. After various steps of the data quality control, the genome-wide detection of CNVs was carried out using Hidden Markov Model in PennCNV (version 1.0.3) software. The results showed that all animals used in this study have CNVs in their genome. In total, 306 CNVs were observed for autosomal chromosomes. The total genomic length of CNVs was 128 Mbp and the average CNV numbers per animal was 20.4. After merging overlapped regions, a total of 286 CNVR regions were identified. These genomic regions were then further evaluated using bioinformatics tools for identifying the metabolic pathways associated with them. The results of gene ontology study indicated that many of these regions are associated with different metabolic pathways such as fertility and reproductive performance, body weight and carcass characteristics, immune system development, and skeletal-muscular system.

کلیدواژه‌ها [English]

  • Afghan sheep
  • Copy Number Variation (CNV)
  • Gene ontology analysis
  • Genetic variation
  • Genome detection
1. Fontanesi L, Beretti F, Martelli PL, Colombo M, Dall'olio S, Occidente M, Portolano B, Casadio R, Matassino D, and Russo V (2011) A first comparative map of copy number variations in the sheep genome. Genomics, 97(3): 158-65.
2. Hou CL, Meng FH, Wang W, Wang SY, Xing YP, Cao JW, Wu KF, Liu CX, Zhang D, Zhang YR, and Zhou HM (2015) Genome-wide analysis of copy number variations in Chinese sheep using array comparative genomic hybridization. Small Ruminant Research, 128: 19-26.
3. Jenkins GM, Goddard ME, Black MA, Brauning R, Auvray B, Dodds KG, Kijas JW, Cockett N and McEwan JC (2016) Copy number variants in the sheep genome detected using multiple approaches. BMC Genomics, 17(1): 1-14.
4. Karimi K, Esmailizadeh A, Wu DD and Gondro C (2018) Mapping of genome-wide copy number variations in the Iranian indigenous cattle using a dense SNP data set. Animal Production Science, 58(7): 1192-1200.
5. Karimi MO (2016) Investigation of genetic diversity and selection markers of genome level in some Afghani sheep breeds. Ferdowsi University of Mashhad, PhD Dissertation. (In Persian)
6. Khan M, Jabeen N, Khan T, Hussain HJ, Asim A, Khan R, Jiang L, Li T, Tao Q, Zhang X, Yin H, Yu C, Jiang X and Shi Q (2018) The evolutionarily conserved genes: Tex37, Ccdc73, Prss55 and Nxt2 are dispensable for fertility in mice. Scientific Reports, 8(1): 1-8.
7. Kirkpatrick BW and Morris CA (2015) A major gene for bovine ovulation rate. PLoS One, 10(6): 7-11.
8. Levent A and Buyukafsar K (2004) Expression of Rho-kinase (ROCK-1 and ROCK-2) and its  substantial role in the contractile activity of the sheep ureter. British Journal of Pharmacology, 143(3): 431-437.
9. Li R, Tang XL, Miao SY, Zong SD, and Wang LF (2009) Regulation of the G2/M phase of the cell cycle by sperm associated antigen 8 (SPAG8) protein. Cell biochemistry and function, 26 (2): 320-328.
10. Liu J, Zhang L, Xu L, Ren H, Lu J, Zhang X, Zhang Sh, Zhou X, Wei C, Zhao F and Du L (2013) Analysis of copy number variations in the sheep genome using 50K SNP BeadChip array. BMC Genomics, 14(1): 229.
11. Mohanty TR, Seo KS, Park KM, Choi TJ, Choe HS, Baik DH and Hwang IH (2008) Molecular variation in pigmentation genes contributing to coat colour in native Korean Hanwoo cattle. Animal Genetics, 39(5): 550-553.
12. Nosrati M and Tahmoursipour M (2016) Identification of variation in genome copy number of 15 Italian sheep breeds using a 50 kb sheep chip. Iranian Journal of Animal Science Research, 8 (3): 489-501. (In Persian)
13. Pailhoux E, Vigier B, Vaiman D, Schibler L, Vaiman A, Cribiu E, Nezer C, Georges M, Sundström J, Pelliniemi LJ, Fellous M and Cotinot C (2001) Contribution of domestic animals to the identification of new genes involved in sex determination. Journal of Experimental Zoology, 290: 700-8.
14. Rashiq MH (1989) Energy metabolism and nutrition economics in animal breeding. Kabul University Journal, 5. (In Persian)
15. Redon R, Ishikawa S, FitchK R, Feuk L, Perry GH, Andrews TD, Fiegler H, Shapero MH, Carson AR, Chen W, Cho EK, Dallaire S, Freeman JL, González JR, Gratacòs M, Huang J, Kalaitzopoulos D, Komura D, MacDonald JR, Marshall CR, Mei R, Montgomery L, Nishimura K, OkamuraK, Shen F, Somerville MJ, Tchinda J, Valsesia A, Woodwark C, Yang F, Zhang J, Zerjal T, Zhang J, Armengol L, Conrad DF, EstivillX, Tyler-Smith C, Carter NP, Aburatani H, Lee C, Jones KW, Scherer SW and Hurles ME (2006) Global variation in copy number in the human genome. Nature, 444(7118): 444-454.
16. Taye M, Kim J, Yoon S H, Lee W, Hanotte O, Dessie T, Kemp S, Mwai O A, Caetano- Anolles K, Cho S, Oh S J, Lee H K and Kim H (2017) Whole genome scan reveals the genetic signature of African Ankole cattle breed and potential for higher quality beef. BMC Genetics, 18(1): 1-14.
17. Usman T, Wang Y, Liu C, He Y, Wang X, Dong Y, Wu H, Liu A and Yu Y (2017) Novel SNPs in IL-17F and IL-17A genes associated with somatic cell count in Chinese Holstein and Inner-Mongolia Sanhe cattle. Animal Science and Biotechnology, 8(1): 1-9.
18. Wang K and Bucan M (2008) Copy number variation detection via high-density SNP genotyping. Cold Spring Harbor Protocols, 3(6):46.
19. Wang K, Li M, Hadley D, Liu R, Glessner J, Grant S F, Hakonarson H and Bucan M (2007) PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Research, 17(11): 1665-1674.
20. Wei C, Wang H, Liu G, Wu M, Cao J, Liu Z, Liu R, Zhao F, Zhang L, Lu J, Liu C and Du L (2015) Genome-wide analysis reveals population structure and selection in Chinese indigenous sheep breeds. BMC Genomics,  16(1): 1-12.
21. Wright D, Boije H, Meadows JR, Bedhom B, Gourichon D, Vieaud A, Tixier-Boichard M, Rubin CJ, Imsland F, Hallböök F and Andersson L (2009) Copy number variation in intron 1 of SOX5 causes the Peacomb phenotype in chickens. PLoS Genetics, 5: e1000512.
22. Zheng YH, Rengaraj D, Choi JW, Park K, Lee SI and Han JY (2009) Expression pattern of meiosis associated SYCP family members during germline development in chickens. Reproduction, 138(3): 483 492.
23. Zhu C, Fan H, Yuan Z, Hu S, Ma X, Xuan J, Wang H, Zhang L, Wei C, Zhang Q, Zhao F and Du L (2016) Genome-wide detection of CNVs in Chinese indigenous sheep with different types of tails using ovine high-density 600K SNP arrays. Scientific Reports, 6(2): 1-9.
24. Zhu C, Li M, Qin S, Zhao F and Fang S (2019) Detection of copy number variation and selection signatures on the X chromosome of Chinese indigenous sheep with different tail types. Animal Sciences, 1011-2367.