برازش توابع غیرخطی برای توصیف منحنی تولید کوتاه مدت تخم در بلدرچین ژاپنی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد دانشگاه زابل، دانشکده کشاورزی، گروه علوم دامی

2 دانشگاه زابل، دانشکده کشاورزی، گروه علوم دامی و گروه بیوانفورماتیک

3 دانشگاه زابل، پژوهشکده دام‌های خاص

4 دانشگاه زابل، دانشکده کشاورزی، گروه علوم دامی و پژوهشکده زیست فناوری کشاورزی دانشگاه زابل

5 دانشگاه زابل، دانشکده فنی و مهندسی، گروه مهندسی عمران

چکیده

هدف از این تحقیق، برازش بهترین تابع برای منحنی تولید تخم طی 13 هفته بلدرچین ژاپنی بود. بدین منظور، رکوردهای هفتگی و انفرادی تولید تخم 314 بلدرچین ژاپنی برای برازش توابع استفاده شد. توابع لجستیک غیرخطی، گامای ناقص، گامای تصحیح شده، لخورست، ناروشین تاکما دو، جزء به جزء و لجستیک نلدر با نرم­افزار  R برازش شد. برای انتخاب بهترین تابع از معیارهای میانگین مربعات خطا، معیار آکائیک و معیار اطلاعات بیزی استفاده شد. نتایج نشان داد که تابع ناروشین تاکما دو (کمترین میانگین مربعات خطا، معیار آکائیک و معیار اطلاعات بیزی) و تابع جزء به جزء (بیشترین میانگین مربعات خطا،
معیار آکائیک، معیار اطلاعات بیزی) به ترتیب مناسب­ترین و نامناسب­ترین تابع برای توصیف منحنی تولید تخم بلدرچین­ها بودند. بیشترین همبستگی (953/0) بین مقادیر پیش­بینی شده تعداد تخم با استفاده از توابع برازش شده و مقدار واقعی مربوط به تابع ناروشین تاکما دو بود. نتایج حاصل از مقایسات توابع و همبستگی­های حاصل نشان می­دهد که تابع ناروشین تاکما دو بهتر از سایر توابع مورد مطالعه در این تحقیق، تولید کوتاه مدت تخم بلدرچین ژاپنی را توصیف می­کند و از این تابع می­توان برای پیش­بینی توان تولید کوتاه مدت بلدرچین ژاپنی استفاده نمود.

کلیدواژه‌ها


عنوان مقاله [English]

Short- term egg production curve fitting using nonlinear models in Japanese quail

نویسندگان [English]

  • Raziyeh Rahimzadeh 1
  • Mohammad Rokouei 2
  • Hadi Faraji- Arough 3
  • Ali Maghsoudi 4
  • Behrooz Keshtegar 5
چکیده [English]

The aim of this study was to fit the best model for describing the egg production for Japanese quails at thirteen week of age. For this purpose, the daily egg production recordson 314 quails were used for the different models including nonlinear logistic, incomplete gamma, McNally, Lekhorst, Narushin -Takma 2, McMillan and Nelder by R software. The best model was selected by some statics such as Mean square error (MSE), Akaike information criterion (AIC), Bayesian information criterion (BIC). The results showed that Narushin Takma 2 (minimum MSE, AIC and BIC) and Compartmental I Functions (maximum MSE, AIC and BIC) were the best and worst function to describe the egg production, respectively. The highest correlation (0.953) between predicted and actual values for the number of egg were obtained by Narushin -Takma 2 model. The results of the model comparisons and correlations indicate that Narushin - Takma 2 function describes Short- term egg production in quail better than other functions studied in this research and this function could be considered in a short- term prediction of the reproductive potential Japanese quail in breeding goals

کلیدواژه‌ها [English]

  • Egg production
  • Narushin - Takma function
  • Nonlinear logistic
  • Puberty
  • quail
Anang A and Indrijani H (2000) Mathematical models to describe egg production in laying hens. Available at htttp://pustaka.unpad.ac.id/wp- content/ uploads/2010/06 atical_models_to_describe_egg.pdf.
2. Bindya LA, Murthy HNN, Jayashankar MR and Govindaiah MG (2010) Mathematical models for egg production in an Indian colored broiler dam line. International Journal of Poultry Science 9: 916-919.
3. Fairfull, RW and Gowe, RS (1990) Genetics of egg production in chickens. In: Crawford RD (Eds.), Poultry breeding and genetics. Elsevier Science Publishers, Amsterdam. pp. 705–759.
4. Faridi A, Mottaghitalab M, Rezaee F and Francet J (2011) Narushin- Takma models as flexible alternatives for describing economic traits in broiler breeder flocks. Poultry Science 90: 507 -514.
5. Grossman M, Grossman TN and Koops WJ (2000) A model for persistency of egg production. Poultry Science 79:1715–1724.
6. Leonard T and Hsh JSJ (2001) Bayesian Methods: an analysis for statisticians and interdisciplinary. Cambridge University Press, Cambridge, PP 333.
7. Lokhorst C (1996) Mathematical curves for the description of input and output variables of the daily production process in aviary housing systems for laying hens. Journal of Poultry Science 75:838–848.
8. McMillan I, Fitz-Earle M, Butler L and Robson DS (1970) Quantitative genetics of fertility I. lifetime egg production of Drosophila Melanogaster. Theoretical Genetics 65: 349-353.
9. McNally DH (1971) Mathematical model for poultry egg production. Biometrics 27: 735-738.
10. Minviell F (1998) Genetic and breeding of Japanese quail for production around the world. Proceedings 6th Asian Poultry Congress. 122-127.
11. Naghous M, Hosseini SM, Naeemipour Younesi H, Hasanpour D and Khodaparast D (2014) Study on statistical characteristics of some non-linear functions in fitting egg production curve. Journal of Livestock Research 2 (3): 71-77. (In Persian).
12. Narinc D, Karaman E, Aksoy T and Mehmet ZF (2013) Investigation of nonlinear models to describe long- term egg production in Japanese quail. Poultry Science 92: 1676- 1682.
13. Narushin VG and Takma C (2003) Sigmoid model for the evaluation of growth and production curves in laying hens. Biosystems Engineering 84:343–348.
14. Nelder JA (1961) The fitting of a generalization of the logistic curve. Biometrics 17:89–110.
15. NRC (1994) Nutrient requirements of poultry. 9th Edn. National Academy Press, Washington.
16. Pinheiro J, Bates D, DebRoy S, Sarkar D, Heisterkamp S and Van Willigen B (2016) R Core Team. nlme: linear and nonlinear mixed effects models. R package version 3.1-128. Available at http://CRAN.R-project.org/package= nlme.
17. Reddish JM, Nestor KE and Lilburn MS (2003) Effect of selection for growth on onset of sexual maturity in random bred and growth-selected lines of Japanese quail. Poultry Science 82: 187–191.
18. Sachdev AK and Ahuja SD (1986) Studies on the influence of body weight at sexual maturity on production traits in Japanese quail. Indian Journal of Poultry Science 21: 66–68.
19. Safari Alighiralou A, Vaez Torshizi R and Pakdel A (2013) Mathematical functions to describe the egg production curves in a commercial broiler dam line. Iranian Journal of Animal Science 43 (4): 502- 512. (In Persian).
20. Shiv P and Singh DP (2009) Nonlinear models for poultry egg production. Indian Journal of Animal Research 43 (2): 84-88.
21. Spiess AN and Neumeyer N (2010) An evaluation of R2 as an inadequate measure for nonlinear models in pharmacological and biochemical research: a Monte Carlo approach. BMC Pharmacology 10 (1): 6.
22. Thomas PC and Ahuja SD (1988) Improvement of broiler quails of CARI through selective breeding. Poultry Guide 25: 45–47.
23. Tunsaringkarn T, Tungjaroenchai W and Siriwong W (2013) Nutrient benefits of quail (Coturnix coturnix japonica) eggs. International Journal of Scientific and Research Publications 3(5): 1-8.
24. Wit E, Heuvel EVD and Romeijn JW (2012) ‘All models are wrong...’: an introduction to model uncertainty. Statistica Neerlandica 66(3): 217-236.
25. Wolc AT, Wardowska M and Szwacskowski T (2004) Predicting ability of the Mathematical models describing egg production curves. 22nd world’s poultry congress, Istanbul, Turkey. 143.
26. Wood PDP (1967) Algebratic model of the lactation curve in cattle. Nature 216: 164-165.
27. Yang N, Wu C and McMillan I (1989) New mathematical model of poultry egg production. Poultry Science 68: 476-481.