Document Type : Research Paper

Authors

1 Corresponding Author, Animal Science Research Department, Golestan Agricultural and Natural Resources Research and Education Center, AREEO, Gorgan, Iran. E-mail: k.yusefi@areeo.ac.ir

2 Babolkenar pure line complex, State Livestock Affir Logestic Company, Ministry of Jihad-e Agriculture, Babol, Iran. E-mail: hyussefi@yahoo.com

3 Department of Animal and Poultry Nutrition, Faculty of Animal Sciences Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran. E-mail: rouhanipour_s99@gau.ac.ir

4 Department of Nutrition and Physiology, Animal Science Research Institute, Karaj, Iran. E-mail: hosseini1355@areeo.ac.ir

5 Animal Science Research Department, Golestan Agricultural and Natural Resources Research and Education Center, AREEO, Gorgan, Iran. K.nobari@areeo.ac.ir

6 Animal Science Research Department, Golestan Agricultural and Natural Resources Research and Education Center, AREEO, Gorgan, Iran. m.mohajer@areeo.ac.ir

7 Animal Science Research Department, Golestan Agricultural and Natural Resources Research and Education Center, AREEO, Gorgan, Iran. p.poorghafoor@areeo.ac.ir

Abstract

Introduction: In the past, the use of valine (L-Val) in broiler feeds was limited due to its high price and relatively low availability. However, L-Val is becoming more available for the feed industry, resulting in a more viable price, leading to its inclusion in feed formulas. Moreover, to decrease the dietary content of crude protein, the use of L-Val in broiler diets is becoming more attractive. Arian broiler is one of the meat strains that originated in Iran and considering that several decades have passed since the arrival of the Arian line in our country. Therefore, it is necessary to carry out continuous nutritional experiments to more accurately meet the requirement of Arian broiler with regard to optimizing growth, feed conversion ratio (FCR), and carcass efficiency by increasing the density of nutrients such as amino acids (AA). Therefore, the objective of this study was to investigate the effects of different ratios of dietary valine-to lysine on growth performance, blood parameters, immune system, carcass characteristics and economic indicators in Arian broiler chickens.
Materials and Methods: This experiment was conducted for 40 days with three satges: starter (0-14 days old), growth (15-25 days old) and finisher (26-40 days old). In this study, a total of 500 Arian strain day old broiler chicks were used in a completely randomized design with five treatments, five replicates and 20 birds per each. Feed intake and body weight were measured at the end of each rearing periods and FCR was calculated. The experimental groups included: first group: control (-75; 75% ratio of valine to lysine without using synthetic L-Val), second group: +80 (ratio of 80% valine to lysine using synthetic L-Val), third group: +85 (ratio of 85% valine to lysine using synthetic L-Val), fourth group: -80 (ratio of 80% valine to lysine without using synthetic L-Val and fifth group: -85 (ratio of 85% valine to lysine without using synthetic L-Val). At 40 days of age, six birds from each replicate were randomly selected, weighed, and killed).
Results and Disscution: Results showed that diets with ratios of -80 and -85% valine amino acid increased body weight at the age of 0 to 42 days (P<0.05). The diets with a ratios of -85% valine amino acid increased feed intake during the total period of experiment (P<0.05). The intake of diets with ratios of -80 and -85% valine amino acid improved FCR and decreased abdominal fat (P<0.05). The level of albumen and total protein in control treatment were higher than in all experimental groups (P<0.05). Significant differences were not observed in relative size of spleen and bursa of fabricius, antibody titer against Newcastle disease and heterophile to lymphocyte ratio between experimental groups.
Conclusion: The results showed that feeding a diet containing -85% valine amino acid was more obvious on performance in the entire rearing periods, and also will improve serum lipid parameters, reduce fat storage in the abdominal area and increase profitability. Finally, the economic calculations of the project showed that it is possible to use the advantage of using synthetic valine amino acid in ration of Arian broilers.

Keywords

اسعدی، محمد؛ علمدارلو، حامد؛ موسوی، سیدحبیب اله و احسانی، علیرضا (2023). کارایی فنی و عوامل تعیین‌کننده آن: مزارع پرورش مرغ گوشتی آرین در استان کردستان. تولیدات دامی، 25(2)، 229-240.‎ https://doi.org/10.22059/jap.2023.352418.623720 
خادم‌ناسی، فاطمه و طاهری، حمیدرضا (1400). اثر محدودیت کیفی خوراک و مدت زمان اعمال آن بر عملکرد، فراسنجه‌های بیوشیمیایی خون و خصوصیات لاشه جوجه‌‌های گوشتی. پژوهش‌های تولیدات دامی، 12(33)، 10-18.‎ https://doi.org/10.52547/rap.12.33.10
رستم‌خانی، علیرضا؛ ایلا، نیما؛ فرودی، فرهاد؛ افسر، علی (1391). اثر استفاده از جیره‌های غذایی با پروتئین خام کاهش یافته حاوی مقادیر کافی اسیدهای آمینه ضروری بر عملکرد و ایمنی جوجه‌های گوشتی. دانش و پژوهش علوم دامی، 91(2)، 11-23.‎ [Google Scholar]
صالحی‌فر، شیوازاد؛ محمود، فرودی؛ چمنی، محمد و بهاری، کاشانی (1394). اثر جیره نویسی براساس نسبت‏‌های مختلف اسیدهای آمینه ایده‌آل بر سیستم ایمنی، فراسنجه‌های خونی و اجزای لاشه جوجه‌های گوشتی در دوره پایانی. تحقیقات تولیدات دامی، 6(2)، 63-73. https://doi.org/10.22124/ar.2017.230
صلاحی مقدم، رضا و شهیر، محمدحسین (1399). پاسخ جوجه‌های گوشتی به سطوح مختلف پروتئین ایده‌آل و نسبت‌های والین به لیزین قابل هضم جیره در دوره آغازین. تولیدات دامی، 23(4)، 535-548.‎ https://doi.org/10.22059/jap.2021.323616.623617
صفی‌یاری، النار؛ فرهومند، پرویز و دانشیار، محسن (1396). تعیین سطح نیازهای جیره‌ای اسیدآمینه لوسین برای جوجه خروس‌های گوشتی سویه راس 308 در دوره پایانی. نشریه علوم دامی، 117، 129-140. https://doi.org/10.22092/asj.2018.116051 
مرادی، محمد؛ مقصودلو، شهریار؛ رستمی، فرامرز و مصطفی‌لو، یوسف (1391). اثر سطوح مختلف جایگزینی دانه سویای اکسترودشده به جای کنجاله سویا و سطوح مختلف ویتامین E بر شاخص تولید و صفات اقتصادی جوجه‌های گوشتی. تحقیقات تولیدات دامی، 1(4)، 15-25. ‎ [Google Scholar]
مصلحی، امیر؛ ایلا، نیما؛ زارعی، ابوالفضل و افسر، علی (1388). ارزیابی تأثیر سطوح مختلف اسیدآمینه والین بر عملکرد وصفات لاشه جوجه‌های گوشتی سویه راس. دانش و پژوهش علوم دامی، 4، 73-83. https://sid.ir/paper/469047/fa
 
References
Abou-Elkhair, R., Ahmed, H., Ketkat, S., & Selim, S. (2020). Supplementation of a low-protein diet with tryptophan, threonine, and valine and its impact on growth performance, blood biochemical constituents, immune parameters, and carcass traits in broiler chickens. Veterinary World, 13(6), 1234. https://doi.org/10.14202%2Fvetworld.2020.1234-1244
Agostini, P. S., Santos, R. R., Khan, D. R., Siebert, D., & Van der Aar, P. (2019). The optimum valine: lysine ratios on performance and carcass traits of male broilers based on different regression approaches. Poultry Science, 98(3), 1310-1320. https://doi.org/10.3382/ps/pey454
Alagawany, M., Elnesr, S. S., Farag, M. R., Tiwari, R., Yatoo, M. I., Karthik, K., & Dhama, K. (2021). Nutritional significance of amino acids, vitamins and minerals as nutraceuticals in poultry production and health. Veterinary Quarterly, 41(1), 1-29. https://doi.org/10.1080/01652176.2020.1857887
Allameh, S., & Toghyani, M. (2019). Effect of dietary valine supplementation to low protein diets on performance, intestinal morphology and immune responses in broiler chickens. Livestock Science, 229, 137-144. https://doi.org/10.1016/j.livsci.2019.09.025
Berresa, J., Vieiraa, S. L., Faveroa, A., Freitasa, D. M., Pe˜ naa, J. E. M., & Nogueirab, E. T. (2011). Digestible valine requirements in high protein diets for broilers from twenty-one to forty-two days of age. Animal Feed Science and Technology, 165, 120-124. https://doi.org/10.1016/j.anifeedsci.2011.01.001
Boisen, S., Hvelplund, T., & Weisbjerg, M. R. (2000). Ideal amino acid profiles as a basis for feed protein evaluation. Livestock Production Science, 64(2), 239-251. https://doi.org/10.1016/S0301-6226(99)00146-3
Brown, A. T., Lee, J., Adhikari, R., Haydon, K., & Wamsley, K. G. S. (2022). Determining the optimum digestible isoleucine to lysine ratio for Ross 708 x Ross YP male broilers from 0 to 18 d of age. Journal of Applied Poultry Research, 31(1), 100217. https://doi.org/10.1016/j.japr.2021.100217
Ciurescu, G., Vasilachi, A., & Grosu, H. (2020). Efficacy of microbial phytase on growth performance, carcass traits, bone mineralization, and blood biochemistry parameters in broiler turkeys fed raw chickpea (Cicer arietinum L., cv. Burnas) diets. Journal of Applied Poultry Research, 29(1), 171-184. https://doi.org/10.1016/j.japr.2019.10.004
Corzo, A., Fritts, C. A., Kidd, M. T., & Kerr, B. J. (2005). Response of broiler chicks to essential and non-essential amino acid supplementation of low crude protein diets. Animal feed science and technology, 118(3-4), 319-327. https://doi.org/10.1016/j.anifeedsci.2004.11.007
 Corzo, A., Kidd, M. T., Dozier III, W. A., & Vieira, S. L. (2007). Marginality and needs of dietary valine for broilers fed certain all-vegetable diets. Journal of Applied Poultry Research, 16(4), 546-554. https://doi.org/10.3382/japr.2007-00025
Corzo, A., Dozier, W. A., Mejia, L., Zumwalt, C.D., Kidd, M. T., & Tillman, P. B. (2011). Nutritional feasibility of l-valine inclusion in commercial broiler diets. Journal of Applied Poultry Research, 20, 284-290. https://doi.org/10.3382/japr.2010-00233
Dozier, W. A., Kidd, M. T., & Corzo, A. (2008). Dietary amino acid responses of broiler chickens. Journal of Applied Poultry Research, 17(1), 157-167. https://doi.org/10.3382/japr.2007-00071
Fontaine, J., Hörr, J., & Schirmer, B. (2001). Near-infrared reflectance spectroscopy enables the fast and accurate prediction of the essential amino acid contents in soy, rapeseed meal, sunflower meal, peas, fishmeal, meat meal products, and poultry meal. Journal of Agriculture Food Chemistry, 49(1), 57-66. https://doi.org/10.1021/jf000946s
Fontaine, J., Hörr, J., & Schirmer, B. (2002). Near-infrared reflectance spectroscopy enables the fast and accurate prediction of the essential amino acid contents 2. Results for wheat, barley, corn, triticale, wheat bran/middlings, rice bran, and sorghum. Journal of Agriculture Food Chemistry, 50(14), 3902-3911. https://doi.org/10.1021/jf011637k
Hernández, F., López, M., Martinez, S., Megías, M. D., Catalá, P., & Madrid, J. (2012). Effect of low-protein diets and single sex on production performance, plasma metabolites, digestibility, and nitrogen excretion in 1-to 48-day-old broilers. Poultry Science, 91(3), 683-692. https://doi.org/10.3382/ps.2011-01735
Kidd, M.T., Tillman, P. B., Waldroup, P.W., & Holder, W. (2013). Feed-grade amino acid use in the United States: The synergetic inclusion history with linear programming. Journal of Applied Poultry Research, 22, 583-590. https://doi.org/10.3382/japr.2012-00690
Kidd, M. T., &  Tillman, P. B. (2016). Key principles concerning dietary amino acid responses in broilers. Animal Feed Science and Technology, 221, 314-322.  https://doi.org/10.1016/j.anifeedsci.2016.05.012
Krams, I., Vrublevska, J., Cirule, D., Kivleniece, I., & Krama T., (2012). Heterophil/lymphocyte ratios predict the magnitude of humoral immune response to a novel antigen in great tits (Parus major). Comparison Biochemistry Physiology, 161, 422-428. https://doi.org/10.1016/j.cbpa.2011.12.018
Kwon, W. B., Soto, J. A., & Stein, H. H. (2020). Effects on nitrogen balance and metabolism of branched-chain amino acids by growing pigs of supplementing isoleucine and valine to diets with adequate or excess concentrations of dietary leucine. Journal of animal science, 98(11), 346. https://doi.org/10.1093/jas/skaa346
Lisnahan, C. V., Nahak, O. R., & Pardosi, L. (2023). The Effects of L-Valine Supplementation in Feed on the Growth and Ileal Morphometry of Grower-Phase Native Chickens. Journal of Advanced Veterinary Research, 13(1), 58-64. [Google Scholar]
Miranda, D. J. A., Vieira, S. L., Angel, C. R., Rios, H. V., Favero, A., & Nogueira, E. T. (2014). Broiler responses to feeds formulated with or without minimum crude protein restrictions and using supplemental L-valine and L-isoleucine. Journal of Applied Poultry Research, 23, 1-14. https://doi.org/10.3382/japr.2014-0988
Namroud, N. F., Shivazad, M., & Zaghari, M. (2008). Effects of fortifying low crude protein diet with crystalline amino acids on performance, blood ammonia level, and excreta characteristics of broiler chicks. Poultry science, 87(11), 2250-2258. https://doi.org/10.3382/ps.2007-00499
Nawaz, H., Mushtaq, T., & Yaqoob, M. (2006). Effect of varying levels of energy and protein on live performance and carcass characteristics of broiler chicks. The Journal of Poultry Science, 43(4), 388-393. https://doi.org/10.2141/jpsa.43.388
Nascimento, G. R., Murakami, A.E., Ospina-Rojas, I. C., Diaz-Vargas, M., Picoli, K. P., & Garcia, R. G. (2016). Digestible valine requirements in low-protein diets for broilers chicks. Brazilian Journal of Poultry Science, 18(3), 381-386. https://doi.org/10.1590/1806-9061-2015-0162
Neeteson, A. M., Avendaño, S., Koerhuis, A., Duggan, B., Souza, E., Mason, J., & Bailey, R. (2023). Evolutions in Commercial Meat Poultry Breeding. Animals, 13(19), 3150. https://doi.org/10.3390/ani13193150
Nie, C., He, T., Zhang, W., Zhang, G., & Ma, X. (2018). Branched chain amino acids: beyond nutrition metabolism. International journal of molecular sciences, 19(4), 954. https://doi.org/10.3390/ijms19040954
Sklan, D., & Plavnik, I. (2002). Interactions between dietary crude protein and essential amino acid intake on performance in broilers. British Poultry Science, 43(3), 442-449. https://doi.org/10.1080/00071660120103710
Ospina-Rojas, I. C., Murakami, A. E., Eyng, C., Nunes, R. V., Duarte, C. R. A., & Vargas, M. D. (2012). Commercially available amino acid supplementation of low-protein diets for broiler chickens with different ratios of digestible glycine+serine:lysine. Poultry Science, 91, 3148-3155. https://doi.org/10.3382/ps.2012-02470
Ospina-Rojas, I. C., Murakami, A. E., Duarte, C. R. A., Nascimento, G. R., Garcia, E. R. M., Sakamoto, M. I., & Nunes, R. V. (2017). Leucine and valine supplementation of low-protein diets for broiler chickens from 21 to 42 days of age. Poultry Science, 96(4), 914-922. https://doi.org/10.3382/ps/pew319
Patbandha, T. K., Garg, D. D., Marandi, S., Vaghamashi, D. G., Patil, S. S., & Savsani, H. H. (2017). Effect of chick weight and morphometric traits on growth performance of coloured broiler chicken. Journal of Entomology and Zoology Studies, 5(6), 1278-1281. [Google Scholar]
Pastor, A., Wecke, C., & Liebert, F. (2013). Assessing the age-dependent optimal dietary branched-chain amino acid ratio in growing chicken by application of a nonlinear modeling procedure. Poultry Science, 92, 3184-3195. https://doi.org/10.3382/ps.2013-03340
Sterling, K. G., Pesti, G. M., & Bakalli, R. I. (2006). Performance of different broiler genotypes fed diets with varying levels of dietary crude protein and lysine. Poultry Science, 85(6), 1045-1054. https://doi.org/10.1093/ps/85.6.1045
Such, N., Pál, L., Strifler, P., Horváth, B., Koltay, I. A., Rawash, M. A., & Dublecz, K. (2021). Effect of feeding low protein diets on the production traits and the nitrogen composition of excreta of broiler chickens. Agriculture, 11(8), 781. https://doi.org/10.3390/agriculture11080781
Tavernari, F. C., Lelis, G.  R., Vieira, R. A., Rostagno, H. S., Albino, L. F. T., & Oliveira Neto, A. R. (2013). Valine needs in starting and growing Cobb (500) broilers. Poultry Science, 92, 151-157.  https://doi.org/10.3382/ps.2012-02278 
Van Harn, J., Dijkslag, M. A., & Van Krimpen, M. M. (2019). Effect of low protein diets supplemented with free amino acids on growth performance, slaughter yield, litter quality, and footpad lesions of male broilers. Poultry Science, 98(10), 4868-4877. https://doi.org/10.3382/ps/pez229