Document Type : Research Paper

Authors

1 Former M.Sc. Student, Department of Animal Science, Faculty of Agriculture, University of Zabol, Zabol, Iran

2 Associate Professor, Department of Animal Science and Bioinformatics, Agriculture Faculty, University of Zabol, Zabol, Iran. ;Associate Professor, Department of Animal and Poultry Science, College of Aburaihan, University of Tehran Pakdasht, Tehran, Iran.

3 Assistant Professor, Research Center of Special Domestic Animals, University of Zabol, Zabol, Iran

4 Associate Professor, Department of Animal Science and Bioinformatics, Agriculture Faculty, University of Zabol, Zabol, Iran

5 Assistant Professor, Agricultural Research, Education and Extension Organization, Zabol, Iran

Abstract

The purpose of this study was to fit different nonlinear models to describe growth curve and selection the best model to describe a growth curve for calves of Sistani calves. Body weight records of 241 calves (118 males and 123 females) collected by the Sistani Dairy Cattle Research Station of Zahak from year 2010 to 2017 were used. Four nonlinear models (Gompertz, Logistic, Richards, and Weibull) were fitted to the body weight records and the best model was selected by the goodness-of-fit criteria (Mean square error, Bayesian information criterion, Akaike information criterion and corrected coefficient of determination). According to goodness-of-fit criteria, Richards model was the most appropriate model to describe the growth curve in male and female calves. The effect of sex on curve parameters was significant in many functions (P <0.05). Logistic and Richards models had the highest and the lowest initial weight parameter, respectively. Male calves reached to the inflection point in a higher age and weight compared to female calves. According to the results of this study, a proper model can be used to study the growth pattern of this breed in order to better nutritional management and selection for rapid growth with high accuracy.

Keywords

  1. Aggrey SE, Ankra-Badu GA and Marks HL (2003) Effect of long-term divergent selection on growth characteristics in Japanese quail. Poultry Science, 82: 538-542.
  2. Alonso J, Díez J, Luaces O and Bahamonde A (2018) A new method to learn growth curves of beef cattle using a factorization approach. Computers and Electronics in Agriculture, 151: 77-83.
  3. Arango JA and Van Vleck LD (2002) Size of beef cows: Early ideas, new developments. Genetic Molecular Research, 1: 51-63.
  4. Bahashwan S, Alrawas AS, Alfadli S and Johnson ES (2015) Dhofari cattle growth curve prediction by different non-linear model functions. Livestock Research for Rural Development, 27: 236.
  5. Beltran JJ, Buttts WT, Olson TA and Koger M (1992) Growth patterns of two lines of Angus cattle selected using predicted growth parameters. Journal of Animal Science, 70:734-
  6. Berry DP, Horan B and Dillon P (2005) Comparison of growth curves of three strains of female dairy cattle. Animal Science, 80: 151–160.
  7. Birjandi Mand Torkaman- Zehi A (2008) Study of milk production capability and milk characteristics of Sistani cow in Sistan region. The first national conference of Sistani cattle research, University of Zabol. 202-208. (In Persian)
  8. Costa RB, Misztal I, Elzo MA, Bertrand JK, Silva LOC and Lukaszewicz LOC (2011) Estimation of genetic parameters for mature weight in Angus cattle. Journal Animal Science, 89: 2680- 2686.
  9. Darmani Kuhi H, Porter T, López S, Kebreab E, Strathe AB, Dumas A, Dijkstra J and France J (2010) A review of mathematical functions for the analysis of growth in poultry. World’s Poultry Science Journal, 66: 227-240.
  10. Darmani Kuhi HD, Hossein-Zadeh NG, López S, Falahi S and France J (2018) Sinusoidal function to describe the growth curve of dairy heifers. Animal Production Science, 59(6): 1039-1047.
  11. Dogan N, Emer K, Mehmet Z and Tulin A (2010) Comparison of non-linear growth functions to describe the growth in Japanese quails. Journal of Animal Veterinary Advances, 9: 1961-1966.
  12. Engelken TJ (2008) Developing replacement beef heifers. Theriogenology, 70: 569-572.
  13. Gano G, Blanco M, Casasús I, Cortés-Lacruz X and Villalba D (2016) Comparison of B-splines and non-linear functions to describe growth patterns and predict mature weight of female beef cattle. Animal Production Science, 56: 1787-1796.
  14. Gbangboche AB, Alkoiret TI, Toukourou Y, Kagbo A and Mensah GA (2011) Growth curves for different body traits of Lagune cattle. Journal of Animal Science, 5(2): 1724.
  15. Goldberg V and Ravagnolo O (2015) Description of the growth curve for Angus pasture-fed cows under extensive systems. Journal of Animal Science, 93(9): 4285-4290.
  16. Gwaza DP, Bridgwater FE and Williams CG (2002) Genetic analysis of growth curves for a woody perennial species. Pinus taeda, 105: 526-531.
  17. Hafiz AWM, Mohamad Hifzan R, Izuan Bahtiar AJ and Ariff OM (2015) Describing growth pattern of Brakmas cows using non-linear regression models. Malaysian Journal of Animal Science, 18: 37-45.

 

 

  1. Lopes FB, Silva MC, Marques EG and Ferreria JL (2011) Ajuste de curvas de crescimento em bovinos Nelore da região Norte do Brasil. Revista Brasileira de Saúde e Produção Animal, 12(3): 607-617.
  2. Marinho KNS, Freitas AR, Falcão AJS and Dias FEF (2013) Nonlinear models for fitting growth curves of Nellore cows reared in the Amazon Biome. Revista Brasileira de Zootecnia, 42: 645-650.
  3. Menchaca MA, Chase CC, Olson TA and Hammond AC (1996) Evaluation of growth curves of Brahman cattle of various frame sizes. Journal of Animal Science, 74: 2140-2151.
  4. Miguel JA, Melendez SJ, Asenjo B, Bonilla LM and Ciria J (2012) Growth modeling of castrated Brahman males raised in tropical conditions and born in different seasons. Ciencia e Investigación Agraria, Santiago, 39(2): 279-288.
  5. Moreira RP, Mercadante MEZ, Pedrosa VB, Cyrillo JNDSG and Henrique W (2016) Growth curves on females of the Caracu breed. Semina: Ciências Agrárias, 37(4Supl1): 2749-2758.
  6. Pinheiro J, Bates D, DebRoy S, Sarkar D, Heisterkamp S and Van Willigen B (2016) R Core Team. nlme: linear and nonlinear mixed effects models. R package version 3.1-128. Available at http://CRAN.R-project.org/package=nlme/ (accessed 15 May 2021).
  7. Silva FL, Alencar MM, Freitas AR, Packer IU and Mourão GB (2011) Growth curves in beef cows of different biological types. Pesquisa Agropecuária Brasileira, 46: 262-271.
  8. Venot E, Piles M, Renand G and Jaffrézic F (2004) Genetic analysis of growth curve parameters for beef cattle using Markov chain Monte Carlo estimation methods. 55th Annual Meeting of the European Association for Animal Production, Bled, Slovenia. 1-8.