Document Type : Research Paper

Authors

1 M.Sc. Graduate, Department of Animal Science, Faculty of Agriculture, University of Zabol, Zabol, Iran

2 Associate Professor, Department of Animal Science, Faculty of Agriculture, University of Zabol, Zabol, Iran

3 Assistant Professor, Department of Animal Science, Faculty of Agriculture, University of Zabol, Zabol, Iran

4 Assistant Professor, Research Center of Specific Livestock, University of Zabol, Zabol, Iran

Abstract

The aim of this study was to design the base breeding plan in Sistani cattle by using of stochastic simulation. For this purpose, three population size (500, 1000, 2000 heads), three levels of herd number (5, 10, 20), two levels of selection intensity (high and low) and two levels of mating method (random and Minimum co-ancestry) were combined together and in total 36 scenarios were compared for 30 years. Results showed that the effect of all factors on the annual genetic gain for total merit, the annual genetic gain of birth weight (except in mating method and selection intensity) and yearling weight, the annual inbreeding rate (except in herd number), generation interval (except in mating method and selection intensity) and selection accuracy of sire and dames was significant. The annual genetic gain in high selection intensity, population size of 2000 and less number of herd (5 herds) was 8.5, 93.2 and 38 percent higher than low selection intensity, population size of 500 and more number of herd (20 herds). Despite having less total genetic gain (11 percent) in Minimum co-ancestry mating, the annual inbreeding rate in this mating method was 18 percent lower than random mating. The results of this study showed that less number of herd, large population size and high selection intensity considered in breeding plans of Sistani cattle and minimum co-ancestry mating used for control of population inbreeding.

Keywords

1 . رکوعی م (1388) تجزیه و تحلیل هم‏خونی و ارتباط آن با صفات تولیدی، تولیدمثل و ماندگاری گاوهای شیری ایران. رسالۀ دکتری. دانشگاه تربیت مدرس.
2. فرجی‌آروق ه، اسلمی‏نژاد ع ا، طهمورث‌پور م، رکوعی م و شریعتی م م (1393) ارزیابی روند هم‏خونی جمعیت گاوهای شیری با تغییر نوع آمیزش، شدت انتخاب و استفاده از انتقال جنین با استفاده از شبیه‏سازی تصادفی. پژوهش‌ در نشخوارکنندگان. 2(3): 121-138.
3. فرجی‌آروق ه (1393) تعیین سیستم انتخابی مناسب برای گاوهای هلشتاین ایران به روش شبیه‏سازی تصادفی. رسالۀ دکتری. دانشگاه فردوسی مشهد.
4. منصوری ه و سرحدی ف (1387) معرفی استعدادهای گاو سیستانی به عنوان یکی از ذخایر ژنتیکی دامی کشور، اولین همایش ملی تحقیقات گاو سیستانی، دانشگاه زابل.
 
5 . Caballero A (1994) Developments in the prediction of effective population size. Heredity. 73(6): 657-679.
6 . Caballero A, Santiago E and Toro MA (1996) Systems of mating to reduce inbreeding in selected populations. Animal Science. 62: 431-442.
7 . De Mendiburu F (2014) Agricolae: statistical procedures for agricultural research. R package Version 1: 1-6.
8 . Falconer DS and Mackay TFC (1996) Introduction to quantitative genetics. Fourth Edition, Longman. 469 p.
9 . Frankhan R, Jones LP and Barker JSF (1968) The effects of population size and selection intensity in selection for a quantitative character in Drosophila. I. Short-term response to selection. Genetic Research. 12: 237-248.
10 . Gierdziewicz M (1993) Effect of herd size on estimating cattle breeding value. Animal Science Paper and Reports. 11(1): 5-11.
11 . Hanrahan JP, Eisen EJ and Legates JE (1972) Effects of population size and selection intensity on short- term response to selection for post weaning gain in mice. Genetics. 73: 513-530.
12 . Henryon M, Sorensen AC and Berg P (2009) Mating animals by minimizing the covariance between ancestral contributions generates less inbreeding without compromising genetic gain in breeding schemes with truncation selection. Animal. 3(10): 1339-1346.
13 . Lesley JF (1984) Genetics of livestock improvement (3 Ed). New Jersey 07632 U.S.A. 482 p.
14 . Madsen P and Jensen J (2006) A User’s Guide to DMU: A package for analyzing multivariate mixed models, Version 6. Danish Institute of Agricultural Sciences, Dept. of Animal Breeding and Genetics, Research Centre Foulum.
15 . Meuwissen TH (1997) Maximizing the response of selection with a predefined rate of inbreeding. Journal of Animal Science. 75(4): 934-940.
16 . Nirea KG, Sonesson AK, Woolliams JA and Meuwissen TH (2012) Effect of non-random mating on genomic and BLUP selection schemes. Genetic Selection Evolution. 44(1): 1-7.
17 . Pedersen L, Sørensen A, Henryon M Ansari-Mahyari S and Berg P (2009) ADAM: A computer program to simulate selective breeding schemes for animals. Livestock Science. 121: 343-344.
18 . Pico BA (2004) Estimation of genetic parameters for growth traits in South African Brahman cattle. Faculty of Natural and Agricultural Sciences, Department of Animal, Wildlife and Grassland Sciences, University of the Free State, Ph.D. Dissertation.
19 . Quinton M and Smith C (1995) Comparison of evaluation-selection systems for maximizing genetic response at the same level of inbreeding. Journal of Animal Science. 73: 2208-2212.
20 . Sonesson AK and Meuwissen THE (2000) Mating schemes for optimum contribution selection with constrained rates of inbreeding. Genetic Selection Evolution. 32: 231-248.
21 . Sonesson AK and Meuwissen THE (2002) Non-random mating for selection with restricted rates of inbreeding and overlapping generations. Genetic Selection Evolution. 34: 23-39.
22 . Van Der Werf J (2006) Optimizing design of breeding programs. Armidale Animal Breeding Summer Course 65-101.
23 . Villanueva B, Woolliams JA and Simm G (1994) Strategies for controlling rates of inbreeding in MOET nucleus schemes for beef cattle. Genetic Selection Evolution. 26: 517-535.