Document Type : Research Paper

Authors

1 Department of Animal Science, Lorestan University, Khorramabad, Iran. E-mail: asadi.al@lu.ac.ir

2 Corresponding Author, Department of Animal Science, Lorestan University, Khorramabad, Iran. E-mail: kiani.a@lu.ac.ir

3 Department of Animal Science, Lorestan University, Khorramabad, Iran. E-mail: azizi.ay@lu.ac.ir

4 Department of Animal Science, Lorestan University, Khorramabad, Iran. E-mail: forouharmehr.a@lu.ac.ir

5 Department of Animal Science, Lorestan University, Khorramabad, Iran. E-mail: fadayifar.a@lu.ac.ir

10.22059/jap.2025.397130.623851

Abstract

Objective: Soybean meal is the most commonly fed protein source in ruminant nutrition. Soybean meal protein has moderate ruminal degradability (45-70%) and is deficient in  methionine,. which negatively impacts  the efficiency of nitrogen utilization in the diet and the environmental impact  of excess nitrogen in the urine. This combination of problems, plus market shortages, has spurred the search for suitable replacements for soybean meal. Alternative protein sources such as corn gluten meal and fish meal have a higher rumen-undegradable protein fraction and greater methionine and lysine content than soybean meal. The aim of the present study was to assess the effects of replacing soybean meal partially by corn gluten meal and fish meal on performance, physicochemical characteristics (pH and water-holding capacity, cooking loss) and fatty acid profile of meat in fattening male lambs.
Method: A completely randomized design was used to study the effect of three experimental treatments (7 lambs per treatment on feed intake, daily weight gain, and feed conversion ratio (FCR) of 21 male Lori-Bakhtiari lambs (age: 120±15 days, initial weight: 33±2.5 kg) fed individually for 75 days (including a 15-day adaptation period)  with diets containing 13% soybean meal, 5% soybean meal + 3.5% corn gluten meal, or 5% soybean meal + 2% corn gluten meal + 2% fish meal. All diets had aratio of rumen-degradable protein (63%) to rumen-undegradable protein (37%). After slaughter,the physicochemical characteristics and fatty acid profile of the meat were determined.
Results: There was no effect of replacing soybean meal with corn gluten and fish meal ondry matter intake. The final weightm daily weight gain  and FCR were all significantly better (P<0.05) for lambs fed a diet containing a mixture of three protein sources (soybean meal+corn gluten+fish meal) compared to other lambs.. Replacing of soybean meal with corn gluten and fish meal did not affect the moisture, fat, and mineral percentages of the lamb meat, but it decreased  the protein percentage of the lamb meat (P< 0.05). The physicochemical characteristics of the lamb meat were also not affected by the replacement of soybean meal with corn gluten and fish meal. Generally, partial replacement of soybean meal by corn gluten and fish meal did not significantly affect the concentration of fatty acids in the meat (as a percentage of total fatty acids) in male lambs, but, the percentages of arachidic acid (C20:0) and docosahexaenoic acid (C22:6) were higher in the meat of lambs fed a diet containing corn gluten + fish meal compared to those fed soybean meal (P<0.05). 
Conclusion: Results of the present study revealed that replacing soybean meal with a mixture of corn gluten and fish meal improved growth performance without  affecting the physicochemical characteristics  and the fatty acid profile of the meat in fattening lambs.

Keywords

اعتراف، محمد؛ تیموری یانسری، اسدالله و چاشنی دل، یدالله (1399). تعیین ترکیب شیمیایی خوراک گلوتن ذرت و مقایسه عملکرد، قابلیت‌هضم مواد مغذی و صفات لاشه بره‌های پرواری با سطوح مختلف جایگزینی کنجاله سویا با خوراک گلوتن ذرت. پژوهش در نشخوارکنندگان، 8(2)، 57-72.
رمضانی، محمدعلی؛ چاشنی دل، یدالله؛ تیموری یانسری، اسدالله و دلدار، حمید (1392). تأثیر سطوح مختلف پروتئین قابل تجزیه به پروتئین غیر قابل تجزیه در شکمبه بر عملکرد و ویژگی‌های لاشه بره‌های نر آمیخته، فصلنامه پژوهش‌های تولیدات دامی، 4(8)، 35-45.
گمرک جمهوری اسلامی ایران (1404). آمار، آمارهای سالیانه، آمار واردات طی سال 1402. آدرس قابل دست‌یابی در سایت گمرک جمهوری اسلامی ایران.  https://www.irica.ir/file_manager/2779384/2779384.htm
 

References

Bittencourt, C. A., Alves Júnior, R. T., Silva, E. E. P., Meneguette, J. R. S., Schuh, B. R. F., Daley, V. L., Fernandes, S. R., Signoretti, R. D., & Freitas, J. A. )2022(. Replacement of soybean meal with alternative protein sources in the concentrate supplement for lactating Holstein× Gyr cows in an intensive tropical pasture-based system: Effects on performance, milk composition, and diurnal ingestive behavior. Livestock Science, 259, 104898.https://doi.org/10.1016/j.livsci.2022.104898
Eteraf, M., Teimouri Yansari, A., & Chashnidel, Y. )2020(. Determination of chemical composition of corn gluten feed and Comparison of performance, nutrient digestibility and carcass of fattening lambs with different levels of soybean meal replacement with corn gluten feed. Journal of Ruminant Research, 8(2), 57-72. (In Persian). http://do1.org/10.22069/EJRR.2020.17418.1724
Gunderson, S. L., Aguilar, A. A., Johnson, D. E., & Olson, J. D. (1988). Nutritional value of wet corn gluten feed for sheep and lactating dairy cows. Journal of Dairy Science, 71(5), 1204-1210.
Haddad, S. G., Mahmoud, K. Z., & Talfaha, H. A. )2005(. Effect of varying levels of dietary undegradable protein on nutrient intake, digestibility and growth performance of Awassi lambs fed on high wheat straw diets. Small Ruminant Research, 58(3), 231-236. https://doi.org/10.1016/j.smallrumres.2004.10.005
Hussein, H. S., & Jordan, R. M. (1991). Fish meal as a protein supplement in ruminant diets: a review. Journal of Anim Science, 69(5), 2147-2156. DOI: 10.2527/1991.6952147x
Khalid, M. F. S. M., Rehman, A. U., Shahzad, M. A., & Mukhtar, N. )2012(. Effect of dietary protein sources on lamb’s performance: A review. Iranian Journal of Applied Animal Science, 2, 111-120.
Ladeira, M. M., Schoonmaker, J. P., Swanson, K. C., Duckett, S. K., Gionbelli, M. P., Rodrigues, L. M., & Teixeira, P. D. )2018(. Review: Nutrigenomics of marbling and fatty acid profile in ruminant meat. Animal, 12, s282-s294.
Maiga, H. A., Schingoethe, D. J., & Henson, J. E. )1996(. Ruminal degradation, amino acid composition, and intestinal digestibility of the residual components of five protein supplements. Journal of Dairy Science, 79(9), 1647-1653. https://doi.org/10.1017/S1751731118001933
Miranda, M. S., Arcaro, J. R. P., Saran Netto, A., Silva, S. L., Pinheiro, M. G., & Leme, P. R. (2019). Effects of partial replacement of soybean meal with other protein sources in diets of lactating cows. Animal, 13(7), 1403-1411. https://doi.org/10.1017/S1751731118002926
Ponnampalam, E. N., Priyashantha, H., Vidanarachchi, J. K., Kiani, A., & Holman, B. W. B. )2024(. Effects of nutritional factors on fat content, fatty acid composition, and sensorial properties of meat and milk from domesticated ruminants: An overview. Animals, 14(6), 840. doi:10.3390/ani14060840.
Prache, S., Schreurs, N., & Guillier, L. )2022(. Review: Factors affecting sheep carcass and meat quality attributes. Animal, 16, 100330. https://doi.org/10.1016/j.animal.2021.100330
Ramezani, M. A., Chashnidel, Y., Teimori Yansari, A., & Deldar, H. (2014). Effect of varying ruminally degradable to ruminally undegradable protein ratios on performance and carcass characteristics of crossbred male lambs. Research Animal Production, 4(8), 35-45. (In Persian). http://rap.sanru.ac.ir/article-1-286-fa.html 
Santos, F.A.P., Santos, J.E.P., Theurer, C.B., & Huber, J.T. )1998(. Effects of rumen undegradable Protein on dairy cow performance: a 12-year literature review. Journal of Dairy Science, 81, 3182-3213. https://doi.org/10.3168/jds.S0022-0302(98)75884-9
Smet, S. D., Webb, E. C., Claeys, E., Uytterhaegen, L., & Demeyer, D. I. (2000). Effect of dietary energy and protein levels on fatty acid composition of intramuscular fat in double-muscled Belgian Blue bulls. Meat Science, 56(1), 73-79. doi:https://doi.org/10.1016/S0309-1740(00)00023-1.
Sukhija, P. S., & Palmquist, D. L. (1988). Rapid method for determination of total fatty acid content and composition of feedstuffs and feces. Journal of Agricultural and Food Chemistry, 36(6), 1202-1206. doi:10.1021/jf00084a019;doi: 10.1021/jf00084a019
Tamminga, S. (1979). Protein degradation in the forestomachs of ruminants. Journal of Animal Science, 49(6), 1615-1630. https://doi.org/10.2527/jas1979.4961615x
Valizadeh, A., Kazemi-Bonchenari, M., Khodaei-Motlagh, M., Moradi, M. H., & Salem, A. Z. M. )2021(. Effects of different rumen undegradable to rumen degradable protein ratios on performance, ruminal fermentation, urinary purine derivatives, and carcass characteristics of growing lambs fed a high wheat straw-based diet. Small Ruminant Research, 197, 106330. https://doi.org/10.1016/j.smallrumres.2021.106330
Wang, Y., Wang, Q., Dai, C., Li, J., Huang, P., Li, Y., ..., & Yang, H. (2021). Effect of dietary protein level on growth, carcass characteristics, serum biochemical index, and meat quality of Hu male lambs. Small Ruminant Research, 194, 106294. doi:https://doi.org/10.1016/j.smallrumres.2020.106294.
Wood, J. D., Enser, M., Fisher, A. V., Nute, G. R., Sheard, P. R., Richardson, R. I., Hughes, S. I., & Whittington, F. M. )2008(. Fat deposition, fatty acid composition and meat quality: A review. Meat Science, 78(4), 343-358. https://doi.org/10.1016/j.meatsci.2007.07.019