Document Type : Research Paper

Authors

1 Department of Animal Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran. E-mail: moein.taned@znu.ac.ir

2 Corresponding Author, Department of Animal Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran. E-mail: mbzandi@znu.ac.ir

3 Department of AnimalScience, Faculty of Agriculture, University of Zanjan, Zanjan, Iran. E-mail: eskandarinasab_M@znu.ac.ir

4 Department of Animal Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran. E-mail: m.abdoli@znu.ac.ir

Abstract

Introduction: Accurate estimation of genetic and phenotypic variance enhances the selection of superior horses and serves as a valuable tool for the long-term improvement of the sport horse population. Therefore, this study was conducted to estimate the variance components for performance traits of sport horses using the Bayesian method.
Materials and Methods: A database was created using 49,026 records from 1499 horses collected between 2017 and 2020 from the Iranian Equestrian Federation. The sport performance traits examined were race completion time (RCT), number of errors in competition (NEC), and rank at the end of the competition (REC). Analysis of variance and Duncan's multiple comparison tests were used to determine the significance of environmental effects, and genetic parameters were estimated using a Gibbs sampling method. R software was utilized to evaluate environmental effects, fit the model, and estimate reliability, variance components, heritability, and genetic correlations, with the GIBBS1F90 and THRGIBBS1F90 software used for estimation. The statistical model included fixed effects for birth year, sex, age, breed, height of obstacles, and level of difficulty of the event, as well as random effects for rider, date, city of competition, and additive genetic effect.
Results and Discussion: Heritability (h2) was estimated using single-trait and multi-trait models for the traits RCT, NEC, and REC, respectively, as 0.02 and 0.08, 0.13 and 0.23, 0.16 and 0.29. The estimated genetic correlations between the traits RCT and NEC, RCT and REC, and NEC and REC were 0.38, 0.36, and 0.65, respectively. The mean estimated reliability (r2) using single-trait and multi-trait models for the traits RCT, NEC, and REC were 0.60 and 0.69, 0.62 and 0.73, 0.58 and 0.66, respectively. The heritability values of different traits can vary, and a specific trait may exhibit different levels of heritability across various populations. The estimated heritability of RCT, NEC, and REC fell within the range of values reported in various horse populations and it was <0.01–0.41, 0.07–0.38, and 0.02–0.23, respectively. These estimates demonstrate genetic variation in the traits within the study population, and their alignment with other studies increases confidence in the estimated values.
Conclusion: The results of the present study indicated that the heritability of the traits studied was low. Among the performance traits, REC showed the highest heritability. Due to its positive genetic correlation with RCT and NEC, selecting for REC could potentially improve the other traits as well. These findings emphasize the importance of using multi-trait models in breeding programs, as they can provide more accurate heritability estimates and enhance the precision and reliability of breeding value predictions.

Keywords

تاند، م, زندی، م. ب، اسکندری نسب، م. پ و عبدلی، م (1401). مروری بر ارزیابی پارامتر‌های ژنتیکی صفات عملکردی در اسب‌های ورزشی پرش. علمی- ترویجی (حرفه‌ای) دامِستیک, 22(2)، 14-23. doi: 10.22059/domesticsj.2022.345026.1099
 
References
ABACI, S. H., COŞKUN, Ü., & ÖNDER, H. (2019). Comparison of Some random regression models for racing performances of the British racing horses in Turkey. Black Sea Journal of Agriculture, 2(1), 6-9.
Bailey, E., Petersen, J. L., & Kalbfleisch, T. S. (2022). Genetics of Thoroughbred racehorse performance. Annual Review of Animal Biosciences, 10, 131-150.
Bakhtiari, J., & Kashan, N. E. J. (2009). Estimation of genetic parameters of racing performance in Iranian Thoroughbred horses. Livestock Science, 120(1-2), 151-157. https://doi.org/10.1016/j.livsci.2008.05.007
Barrey, E. (2013). Genetic basis of equine performance. Equine Sports Medicine and Surgery: Basic and Clinical Sciences of the Equine Athlete, 43-58.
Bartolomé, E., Menéndez-Buxadera, A., Valera, M., Cervantes, I., & Molina, A. (2013). Genetic (co)variance components across age for Show Jumping performance as an estimation of phenotypic plasticity ability in Spanish horses. Journal of Animal Breeding and Genetics, 130(3), 190-198. https://doi.org/10.1111/jbg.12001
Cervantes, I., Gutiérrez, J. P., García-Ballesteros, S., & Varona, L. (2020). Combining threshold, thurstonian and classical linear models in horse genetic evaluations for endurance competitions. Animals, 10(6), 1075.
Chapard, L., Van Thillo, A., Meyermans, R., Gorssen, W., Buys, N., & Janssens, S. (2023). Adjusted fence height: an improved phenotype for the genetic evaluation of show jumping performance in Warmblood horses. Genetics Selection Evolution, 55(1), 12. https://doi.org/10.1186/s12711-023-00786-2
Chen, M.-H., & Shao, Q.-M. (1999). Monte Carlo estimation of Bayesian credible and HPD intervals. Journal of Computational and Graphical Statistics, 8(1), 69-92.
Doyle, J. L., Carroll, C. J., Corbally, A. F., & Fahey, A. G. (2022). An overview of international genetic evaluations of show jumping in sport horses1. Translational Animal Science, 6(2), txac038. https://doi.org/10.1093/tas/txac038
Faria, R., Vicente, A., & Silva, J. (2023). Racing Performance of the Quarter Horse: Genetic Parameters, Trends and Correlation for Earnings, Best Time and Time Class. Animals, 13(12), 2019.
Flegr, J. (2023). Heritability BT-Encyclopedia of Sexual Psychology and Behavior (T. K. Shackelford (ed.); pp. 1–16). Springer International Publishing. https://doi.org/10.1007/978-3-031-08956-5_2415-1
Food and Agriculture Organization. (2021). Production-Live Animal. http://www.fao.org/faostat/en/#compare.
García-Ballesteros, S., Varona, L., Valera, M., Gutiérrez, J. P., & Cervantes, I. (2018). Cross-validation analysis for genetic evaluation models for ranking in endurance horses. Animal, 12(1), 20-27. https://doi.org/10.1017/S1751731117001331
Gómez, M. D., Menendez‐Buxadera, A., Valera, M., & Molina, A. (2010). Estimation of genetic parameters for racing speed at different distances in young and adult Spanish Trotter horses using the random regression model. Journal of Animal Breeding and Genetics, 127(5), 385-394.
Grantham, K. L., Kasza, J., Heritier, S., Carlin, J. B., & Forbes, A. B. (2022). Evaluating the performance of Bayesian and restricted maximum likelihood estimation for stepped wedge cluster randomized trials with a small number of clusters. BMC Medical Research Methodology, 22(1), 112.
Jönsson, L., Madsen, P., & Mark, T. (2016). Modelling repeated competition records in genetic evaluations of Danish sport horses. Journal of Animal Breeding and Genetics, 133(4), 291-302. https://doi.org/10.1111/jbg.12190
Klecel, W., Drobik-Czwarno, W., & Martyniuk, E. (2021). 36 Factors influencing racing performance in Polish Thoroughbreds and Purebred Arabian horses. Journal of Equine Veterinary Science, 100, 103499.
Köseman, A., & Şeker, İ. (2018). Atların yarış ve yarışma performansları üzerine etkili faktörler ve performansı artırma yolları. Uludağ Üniversitesi Veteriner Fakültesi Dergisi, 37(1), 61-68.
Mezei, A. R., Posta, J., & Mihók, S. (2015). Comparison of different measurement variables based on hungarian show jumping results. In Annals of Animal Science (Vol. 15, Issue 1, pp. 177-183). Walter de Gruyter GmbH. https://doi.org/10.2478/aoas-2014-0063
Nishita, Y., Amaike, Y., Spassov, N., Hristova, L., Kostov, D., Vladova, D., Peeva, S., Raichev, E., Vlaeva, R., & Masuda, R. (2023). Diversity of mitochondrial D‐loop haplotypes from ancient Thracian horses in Bulgaria. Animal Science Journal, 94(1), e13810.
Nolan, S., Smerzi, A., & Pezzè, L. (2021). A machine learning approach to Bayesian parameter estimation. Npj Quantum Information, 7(1), 169. https://doi.org/10.1038/s41534-021-00497-w
Nomura, M., Shiose, T., Ishikawa, Y., Mizobe, F., Sakai, S., & Kusano, K. (2019). Prevalence of post-race exertional heat illness in Thoroughbred racehorses and  climate conditions at racecourses in Japan. Journal of Equine Science, 30(2), 17-23. https://doi.org/10.1294/jes.30.17
Novotná, A., Bauer, J., Vostrý, L., & Jiskrová, I. (2014). Single-trait and multi-trait prediction of breeding values for show-jumping performance of horses in the Czech Republic. Livestock Science, 169(C), 10-18. https://doi.org/10.1016/j.livsci.2014.09.016
Novotná, A., Svitáková, A., & Schmidová, J. (2015). Comparison of models to estimate genetic parameters for scores of competitive sport horse events in the Czech Republic. Czech Journal of Animal Science, 60(9), 383-390. https://doi.org/10.17221/8453-CJAS
Park, K. Do. (2011). Genetic parameters of finish time in Korean Thoroughbred racehorses. Livestock Science, 140(1-3), 49-54. https://doi.org/10.1016/j.livsci.2011.02.006
Próchniak, T., Rozempolska-Rucińska, I., & Zięba, G. (2019). Maternal effect on sports performance traits in horses. Czech Journal of Animal Science, 64(8), 361-365. https://doi.org/10.17221/156/2018-CJAS
Próchniak, T., Rozempolska-Rucińska, I., Zięba, G., & Łukaszewicz, M. (2015). Genetic variability of show jumping attributes in young horses commencing competing. Asian-Australasian Journal of Animal Sciences, 28(8), 1090-1094. https://doi.org/10.5713/ajas.14.0866
Ricard, A., & Chanu, I. (2001). Genetic parameters of eventing horse competition in France. Genetics, Selection, Evolution : GSE, 33(2), 175. https://doi.org/10.1186/1297-9686-33-2-175
Rosa, G. J. M. (2023). Quantitative Methods Applied to Animal Breeding BT  - Animal Breeding and Genetics (M. L. Spangler (ed.); pp. 25-49). Springer US. https://doi.org/10.1007/978-1-0716-2460-9_334
Sahin, M., Yavuz, E., & Uckardes, F. (2018). Multicollinearity problem and bias estimates in Japanese quail. Pakistan Journal of Zoology, 50(2).
Sargolzaei, M., Iwaisaki, H., & Colleau, J. J. (2006). CFC: A tool for monitoring genetic diversity. Proc. 8th World Congr. Genet. Appl. Livest. Prod., CD-ROM Communication, 27-28, 13-18.
Schubertová, Z., Candrák, J., & Rolinec, M. (2016). Genetic Evaluation of Show Jumping Horses in the Slovak Republic. Annals of Animal Science, 16(2), 387-398. https://doi.org/10.1515/aoas-2015-0072
Smith, B. J. (2007). boa: an R package for MCMC output convergence assessment and posterior inference. Journal of Statistical Software, 21, 1-37.
Solé, M., Bartolomé, E., José Sánchez, M., Molina, A., & Valera, M. (2017). Predictability of adult Show Jumping ability from early information: Alternative selection strategies in the Spanish Sport Horse population. Livestock Science, 200, 23-28. https://doi.org/10.1016/j.livsci.2017.03.019
Taned, M., Zandi, M. B., Eskandari Nasab, M., & Abdoli, M. (2022). Genetic parameter estimation of performance traits in sport jumping horses; a review. Professional Journal of Domestic, 22(2), 14-23. https://doi.org/10.22059/domesticsj.2022.345026.1099 (in Persian)
Tavernier, A. (1991). Genetic evaluation of horses based on ranks in competitions. Genetics, Selection, Evolution: GSE, 23(2), 159. https://doi.org/10.1186/1297-9686-23-2-159
Trigg, L. E., Lyons, S., & Mullan, S. (2023). Risk factors for, and prediction of, exertional heat illness in Thoroughbred racehorses at British racecourses. Scientific Reports, 13(1), 3063. https://doi.org/10.1038/s41598-023-27892-x
Velie, B. D., Hamilton, N. A., & Wade, C. M. (2015a). Heritability of racing performance in the Australian Thoroughbred racing population. Animal Genetics, 46(1), 23-29. https://doi.org/10.1111/age.12234
Velie, B. D., Hamilton, N. A., & Wade, C. M. (2015b). Performance selection for Thoroughbreds racing in Hong Kong. Equine Veterinary Journal, 47(1), 43-47. https://doi.org/10.1111/evj.12233
Velie, B. D., Hamilton, N. A., & Wade, C. M. (2015c). Heritability of racing performance in the Australian Thoroughbred racing population. Animal Genetics, 46(1), 23-29. https://doi.org/10.1111/age.12234
Welker, V., Stock, K. F., Schöpke, K., & Swalve, H. H. (2018). Genetic parameters of new comprehensive performance traits for dressage and show jumping competitions performance of German riding horses. Livestock Science, 212, 93-98. https://doi.org/10.1016/j.livsci.2018.04.002