Document Type : Research Paper

Authors

1 Department of Animal Sciences, Faculty of Agriculture, Islamic Azad University, Arak Branch, Arak, Iran. E-mail: naser.bayati@iau.ir

2 Corresponding Author, Department of Animal Sciences, Faculty of Agriculture, Islamic Azad University, Arak Branch, Arak, Iran. E-mail: h-mansouri@iau-arak.ac.ir

3 Animal Science Research Institute of Iran, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran. E-mail: n.papi@areeo.ac.ir

4 Department of Animal Sciences, Faculty of Agriculture, Islamic Azad University, Arak Branch, Arak, Iran. E-mail: j-fakhraei@iau-arak.ac.ir

10.22059/jap.2024.375893.623795

Abstract

Introduction: Climate change causing deficiencies in freshwater resources and increasing salinity of soil and groundwater will lead to a scarcity of forage for ruminants in some countries. Halophyte crops that are adapted to soil and water salinity and high temperatures could provide suitable forage under these harsh conditions. Salicornia is an annual herbaceous halophyte belonging to the Amaranthaceae family, which has more than 175 genera and 2000 species of herbs and is a small shrub. Salicornia grows in temperate and subtropical climates and has yielded from 10 to 20 t/ha of dry biomass when irrigated with seawater. Salicornia is one of the few halophyte plants that can grow with direct use of sea water, although the salinity tolerance threshold of the plant is low in the germination stage. According to the limited studies related to the nutrition of halophyte plants in ruminants, this study aimed to investigate the nutritional value and degradability of different ecotypes of Salicornia spp. in in vitro condition.
Materials and Methods: First, Salicornia samples were collected from the farms of Urmia and Gamishan cities, and immediately after harvesting from the farm, the sample weight was determined to determine the dry matter (DM). In order to evaluate the nutritional value of Salicornia, chemical composition, minerals, gas production and degradability of DM were measured by in vitro.
Results and Discussion: The results showed that the DM percentage of Salicornia was 92 in Urmia ecotype and 85.31 in Gamishan ecotype (P<0.05). Salicornia crude fat percentage was 2.50 in Urmia ecotype and 1.20 in Gamishan ecotype (P<0.05). The ash content of Salicornia fodder in Urmia ecotype was 19.40%. The percentage of NDF and ADF of Salicornia in Urmia ecotype was lower than Gamishan ecotype (P<0.05). The amount of magnesium, calcium, phosphorus, sodium, manganese and iron of Salicornia in Urmia ecotype was higher than Gamishan ecotype (P<0.05). The amount of potassium, copper and zinc in Salicornia was similar between Urmia and Gamishan ecotypes. The amount of gas production of Salicornia fodder in Urmia ecotype was higher than Gamishan ecotype at 2, 4, 6, 8, 12, 24 and 72 hours of incubation (P<0.05); While at 96 hours of incubation, the amount of gas production of Salicornia in Gamishan ecotype increased significantly compared to Urmia ecotype (P<0.05). The gas production potential (A) and gas production rate (C) were higher in Gamishan and Urmia ecotypes, respectively (P<0.05). The results showed that Metabolic energy, net energy and short chain fatty acids obtained from the gas production in Salicornia were higher in Urmia ecotype than Gamishan ecotype (P<0.05). In the Urmia and Gamishan ecotypes, the degradability of the rapidly degradable fraction (a) of Salicornia was 29.04% and 45.47 and slowly degradable fraction (b) 39.24%, and 38.17%, respectively. Effective degradability of Salicornia assuming passage rates of 0.04, 0.06 and 0.08 per hour in Urmia ecotype was 46.59, 42.37 and 40.20%, respectively.
Conclusion: Based on the results of this study, according to the higher amount of produced gas and estimated energy and short chain fatty acids in Urmia ecotype; its use in ruminant nutrition is recommended.

Keywords

رزاقی، علی؛ ولی زاده، رضا؛ ترحمی، محمد (1394). ترکیب شیمیایی، تجزیه‌پذیری و تولید گاز گیاهان شورزیست سلمکی سفید (Atriplex canesences)، علف شور (Salsola rigida) و چمن شور (Aeluropus littoralis). پژوهش‌های علوم دامی. 7(1)، 11-1.
رنجبر، غلامحسن؛ دهقانی، فرهاد؛ علاءالدین، آرش؛ سلطانی، گردفرامرزی؛ ولی، کشتکار؛ سردار (1400). ارزیابی عملکرد برخی گونه‌ها اکوتیپ‌های سالیکورنیا آبیاری‌شده با آب دریا و آب شور زیرزمینی. پژوهش آب در کشاورزی، 35 (2)، 187-199.
صادقی، محمدهادی؛ ساری، محسن؛ محمدآبادی، طاهره؛ رضایی، مرتضی (1399). تعیین ارزش غذایی، تولید گاز و تجزیه‌پذیری گیاهان شورزیست سالیکورنیا (Salicornia europaea)، کاکل (Suaeda aegyptiaca) و گتک (Halocnemum strobilaceum) در گوسفند. فصلنامه محیط زیست جانوری. 12(3)، 21-32.
صادقی، محمدهادی؛ ساری، محسن؛ محمدآبادی، طاهره؛ رضایی، مرتضی (1398). تعیین ارزش غذایی، تولید گاز و تجزیه‌پذیری گیاهان شورزیست سالیکورنیا (Salicornia europaea)، کاکل (Suaeda aegyptiaca) و گتک (Halocnemum strobilaceum) در گوسفند. پایان‌نامه کارشناسی ارشد، پایان‌نامه دکتری، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان. خوزستان ایران.
 
References
Abas, I., Ozpinar, H., Can-Kutay, H., & Kahraman, R. (2005). Determination of the metabolizable energy (ME) and net energy lactation (NEL) contents of some feeds in the Marmara region by in vitro gas technique. Turkish Journal of Veterinary & Animal Sciences, 29, 751-757.
Beigh, Y.A., Ganai, A.M., Ahmad, H.A., Khan, H.M., & Mir, M.S. (2020). Chemical composition and nutritional evaluation of Elm (Ulmus wallichiana) as browse for Bakerwal goats (Capra hircus). Agroforestry Systems, 94, 1367-1379. https://doi.org/10.1007/s10457-018-0314-7.
Blummel, M., & Ørskov E.R. (1993). Comparison of gas production and nylon bag degradability of roughages in predicting feed intake in cattle. Animal Feed Science and Technology, 40, 109-119. https://doi.org/10.1016/0377-8401(93)90150-I.
Getachew, G., Makkar, H.P., & Becker, K. (2002). Tropical browses: contents of phenolic compounds, in vitro gas production and stoichiometric relationship between short chain fatty acid and in vitro gas production. The Journal of Agricultural Science, 139(3), 341-52. https://doi.org/10.1017/S0021859602002393.
Heydari Turkabad, S. (2020). Investigating the morphological and physiological characteristics of Salicornia plant under salinity stress in Yazd. Dissertation to receive a master's degree in natural resources engineering-management of arid and desert areas.
Hoffman, P.C., Sievert, S.J., Shaver, R.D., Welch, D.A., & Combs, D.K. (1993).  In situ dry matter, protein, and fiber degradation of perennial forages. Journal of Dairy Science, 76(9), 2632-43. https://doi.org/10.3168/jds.S0022-0302(93)77599-2.
Ishikawa, N., Shimizu, K., Koizumi, T., Shimizu, T., & Enishi, O. (2002). Nutrient value of saltwort (Salicornia herbacea L.) as feed for ruminants. Asian-australasian journal of animal sciences, 15(7), 998-1001. https://doi.org/10.5713/ajas.2002.998.
Khodadadi, F., & Mousavi nadushan, R. (2019(. Studies on the phytochemistry, nutritional characterization and changes in quality of salicornia persica during storage. Journal of food science and technology, 87(16).
Khoshkholgh Sima, N.A., Reiahi Samani, N., Ebadi, A., & Ghaffari, M.R. (2019). Effects of calcium and phosphorus enrichment on yield and physiological characteristics of Salicornia persica under different salinity levels. Journal of Plant Nutrition, 42(9), 971-981. https://doi.org/10.1080/01904167.2019.1567768.
Makkar, H.P.S. (2005). In vitro gas methods for evaluation of feeds containing phytochemicals. Animal Feed Science Technology, 123, 291-302. https://doi.org/10.1016/j.anifeedsci.2005.06.003.
McSweeney, C.S., Palmer, B., McNeill, D.M., & Krause, D.O. (2001). Microbial interactions with tannins: nutritional consequences for ruminants. Animal feed science and technology, 91(1-2), 83-93. https://doi.org/10.1016/S0377-8401(01)00232-2.
Menke, K., & Steinggass, H. (1988). Estimation of the energetic feed value from chemical analyses and in vitro gas production using rumen fluid. Animal Research and Development, 28, 7-55.
Menke, K., Raa, L., Steingass, H., Fritz, D., & Scheider, W. (1979). The estimation of the digestibility and metabolisable energy content of ruminant feeding stuffs from the gas production technique when they are incubated with rumen liquor in vitro. Journal of Agricultural Science Cambridge, 93, 217-222. https://doi.org/10.1017/S0021859600086305.
Mroczek, A. (2015). Phytochemistry and bioactivity of triterpene saponins from Amaranthaceae family. Phytochemistry Reviews, 14, 577-605. https://doi.org/10.1007/s11101-015-9394-4.
Nedjimi, B., & Beladel, B. (2016). Chemical composition of Salicornia arabica (L.), a potential halophyte for arid rangelands. The Rangeland Journal, 38, 103-107. https://doi.org/10.1071/RJ15090.
Noorollahi, Y., Sokhansefat, S., Sokhansefat, T., Rahmani, K., & Jalilinaasrabady, S. (2015). Biodiesel resources assessment and evaluation of the production capacity from Salicornia plant in Golestan province, north-east, Iran. Int. International Journal of Renewable Energy Research, 5, 847-858.
Ranjbar, G., Dehghani, F., AlaEddin, A., Soltani Gerdfaramarzi, V., & Keshtkar, S. (2021). Yield Evaluation of Some Salicornia Species and Ecotypes Irrigated with Seawater and Groundwater. Journal of Water Research in Agriculture, 35(2), 187-199. https://doi.org/10.22092/jwra.2021.354947.875. (In Persian)
Razzaghi, A., Valizadeh, R., & Tarhami, M. (2014). Chemical composition, decomposition and gas production of white salt marsh plants and salt grass. Iran Animal Science Research Journal, 7(1), 1-11. https://doi.org/10.22067/ijasr.v7i1.48325. (In Persian)
Rozema, J., & Flowers, T. (2008). Crops for a salinized world. Science, 5:322(5907), 1478-80. https://doi.org/10.1126/science.1168572.
Sadeghi, M. H., Sari, M., Mohammad abadi, T., & Rezai, M. (2019). Determination of nutritional value, gas production and degradability of Salicornia europaea, Suaeda aegyptiaca and Halocnemum strobilaceum in sheep. PhD Thesis, Khuzestan University of Agricultural Sciences and Natural Resources. Khuzestan Iran. (In Persian).
Sadeghi, M.H., Sari, M., Mohammad abadi, T., & Rezai, M. (2020). Determination of nutritional value, gas production and degradability of Salicornia europaea, Suaeda aegyptiaca and Halocnemum strobilaceum in sheep. Journal of Animal Environment, 12(3), 21-32. https://doi.org/10.22034/aej.2020.110147. (In Persian)
Shakeri, P. (2007). Chemical composition and digestibility of dominant rangeland plants ofGramineae in Kerman province. Final report of research plan, Animal Science Research Institute Publications, Karaj, Iran, 50p.
Solaiman, S., Shoemaker, C., & DAndrea, G. (2006). The effect of high dietary Cu on health, growth performance and Cu status in young goats. Small Ruminant Research, 66, 85-91. https://doi.org/10.1016/j.smallrumres.2005.07.024.
Van Soest, P.J., Robertson, J.B., & Lewis, B.A. (1991). Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74, 3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2.
Yasseen, B.T., Abu-Al-Basal, M.A., & Alhadi, F.A. (2010). An analysis of leaf growth under osmotic stress. Journal of Plant Sciences, 5(4), 391-401. https://doi.org/10.3923/jps.2010.391.401.