Document Type : Research Paper

Authors

1 Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran. E-mail: moazeni.mh@ut.ac.ir

2 Corresponding Author, Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran. E-mail: atowhidi@ut.ac.ir

3 Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran. E- mail: mzhandi@ut.ac.ir

4 Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran. E- mail: rezayazdi@ut.ac.ir

5 Animal Science Research Institute, Agricultural Research, Education and Extension organization, Karaj, Iran. E-mail: hoda.javaheribarfourooshi@gmail.com

Abstract

The objective of this study was to evaluate the effect of supplementing glycinate form of zinc, copper, iron and manganese on growth performance and some blood biochemical parameters of suckling calves. A total of 20 one-day-old Holstein calves were randomly divided into two equal groups. Until weaning on day 63, the control group received milk and basal starter diet containing whey protein as a carrier while the treatment group received milk containing 6, 1.5, 15, and 6 ppm of zinc, copper, iron and manganese respectively, together with basal starter diet containing 40, 10, 100, and 40 ppm of zinc, copper, iron and manganese respectively. To assess the growth performance, feed intake was measured daily, and calves were weighed weekly. Blood samples were collected on days 0, 21, 42 and 63. Supplementation with glycinate trace elements significantly increased serum albumin, glucose, and high-density lipoprotein and decreased low-density lipoprotein concentrations in suckling calves compared to the control group. Carpus lengths was increased in calves treated with organic trace elements compared to the control group (P<0.05). Also, serum concentration of zinc tended to be higher in calves received glycinate trace mineral supplement (P=0.05). However, supplementation of organic trace minerals had no significant effect on growth performance and concentration of alkaline phosphatase, aspartate aminotransferase, alanine aminotransferase and lactate dehydrogenase in serum. The results of this study showed that supplementing the diet of calves with glycinate trace minerals improved inflammation-related parameters such as albumin, low- and high-density lipoproteins, and energy metabolism-related parameters such as serum glucose. However, supplementation of glycinate trace minerals did not have a significant effect on the growth performance of suckling calves.

Keywords

Reference
Baly, D. L., Curry, D. L., Keen, C. L., & Hurley, L. S. (1984). Effect of manganese deficiency on insulin secretion and carbohydrate homeostasis in rats. The Journal of nutrition, 114(8), 1438-1446.
Bao, Y. M., Choct, M., Iji, P. A., & Bruerton, K. (2007). Effect of organically complexed copper, iron, manganese, and zinc on broiler performance, mineral excretion, and accumulation in tissues. Journal of Applied Poultry Research, 16(3), 448-455.
Bhanderi, B. M., Pande, A. M., & Parnerkar, S. (2010). Influence of organic and inorganic forms of trace minerals supplementation at different doses on daily weight gain and serum mineral levels in male calves. Development, 22, 8.
Byrne, L., Hynes, M. J., Connolly, C. D., & Murphy, R. A. (2021). Influence of the chelation process on the stability of organic trace mineral supplements used in animal nutrition. Animals, 11(6), 1730.
Carpentier, Y. A., & Scruel, O. (2002). Changes in the concentration and composition of plasma lipoproteins during the acute phase response. Current Opinion in Clinical Nutrition & Metabolic Care, 5(2), 153-158.
Coskan, A., & İsmail, S. E. N. (2011). Sigirilarda akut faz proteinleri ve klinik kullanim alanlari. Saglik Bilimleri  Dergisi, 20(3), 240-246.
Deng, B., Zhou, X., Wu, J., Long, C., Yao, Y., Peng, H., Wan, D., & Wu, X. (2017). Effects of dietary supplementation with tribasic zinc sulfate or zinc sulfate on growth performance, zinc content and expression of zinc transporters in young pigs. Animal Science Journal, 88(10), 1556-1560.
Dorton, K. L., Engle, T. E., Hamar, D. W., Siciliano, P. D., & Yemm, R. S. (2003). Effects of copper source and concentration on copper status and immune function in growing and finishing steers. Animal Feed Science and Technology, 110, 31.
Engle, T. E., & Spears, J. W. (2000). Effects of dietary copper concentration and source on performance and copper status of growing and finishing steers. Journal of Animal Science, 78(9), 2446-2451.
Feng, J. W. Q. M., Ma, W. Q., Niu, H. H., Wu, X. M., Wang, Y., & Feng, J. (2010). Effects of zinc glycine chelate on growth, hematological, and immunological characteristics in broilers. Biological Trace Element Research, 133, 203-211.
Feng, J., Ma, W. Q., Xu, Z. R., Wang, Y. Z., & Liu, J. X. (2007). Effects of iron glycine chelate on growth, haematological and immunological characteristics in weanling pigs. Animal Feed Science and Technology, 134(3-4), 261-272.
Gaafar, H. M. A., Bassiouni, M. I., Ali, M. F. E., Shitta, A. A., & Shamas, A. S. E. (2011). Effect of zinc methionine supplementation on productive performance of lactating Friesian cows. Journal of Animal Science and Biotechnology, 2(2), 94-101.
Gaál, T., Ribiczeyné-Szabó, P., Stadler, K., Jakus, J., Reiczigel, J., Kövér, P., Mezes, M., & Sümeghy, L. (2006). Free radicals, lipid peroxidation and the antioxidant system in the blood of cows and newborn calves around calving. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 143(4), 391-396.
Gokce, H. İ., & Bozukluhan, K. (2009). Çiftlik hayvanlarında önemli akut faz proteinleri ve bunların veteriner hekimlik alanındaki kullanımı. Dicle Üniversitesi Veteriner Fakültesi Dergisi, (1), 1-14.
Hansen, S. L., Schlegel, P., Legleiter, L. R., Lloyd, K. E., & Spears, J. W. (2008). Bioavailability of copper from copper glycinate in steers fed high dietary sulfur and molybdenum. Journal of Animal Science, 86(1), 173-179.
Huang, L., Li, X., Wang, W., Yang, L., & Zhu, Y. (2019). The role of zinc in poultry breeder and hen nutrition: an update. Biological Trace Element Research, 192, 308-318.
Iravani, J., & Vakili, R. (2021). Comparison of bioavailability of manganese glycinate and sulfate and their effects on laying hens performance. Journal of Animal Environment, 13(3), 113-120.
Kessler, J., Morel, I., Dufey, P. A., Gutzwiller, A., Stern, A., & Geyer, H. (2003). Effect of organic zinc sources on performance, zinc status and carcass, meat and claw quality in fattening bulls. Livestock Production Science, 81(2-3), 161-171.
Klinkon, M., & Ježek, J. (2012). Values of blood variables in calves. A bird’s-eye view of veterinary medicine’.(Ed. CC Perez-Marin) pp, 301-320.
Kratzer, H. F. (2017). Chelates In Nutrition: 0. CRC Press.
Kumar, A., Sahu, D. S., Chandra, G., Yadav, S. P., Kumar, R., Jaiswal, V., ... & Singh, R. K. (2018). Effect of different sources of zinc on growth performance and haemato-biochemical profiles of Murrah Buffalo calves. Indian Journal of Animal Nutrition, 35(4), 409-414.
Lassiter, J. W., & Morton, J. D. (1968). Effects of a low manganese diet on certain ovine characteristics. Journal of Animal Science, 27(3), 776-779.
Liu, J., Ma, F., Degen, A., & Sun, P. (2023). The Effects of Zinc Supplementation on Growth, Diarrhea, Antioxidant Capacity, and Immune Function in Holstein Dairy Calves. Animals, 13(15), 2493.
Ma, W. Q., Sun, H., Zhou, Y., Wu, J., & Feng, J. (2012). Effects of iron glycine chelate on growth, tissue mineral concentrations, fecal mineral excretion, and liver antioxidant enzyme activities in broilers. Biological Trace Element Research, 149, 204-211.
Ma, W., Niu, H., Feng, J., Wang, Y., & Feng, J. (2011). Effects of zinc glycine chelate on oxidative stress, contents of trace elements, and intestinal morphology in broilers. Biological trace element research, 142, 546-556.
Männer, K., Simon, O., & Schlegel, P. (2006). Effects of different iron, manganese, zinc and copper sources (sulfates, chelates, glycinates) on their bioavailability in early weaned piglets. Tagung Schweine-und Geflügelernährung, M. Rodehutscord. 9th ed. Universität Halle-Wittenberg, Germany.
Miller, E. R., Luecke, R. W., Ullrey, D. E., Baltzer, B. V., Bradley, B. L., & Hoefer, J. A. (1968). Biochemical, skeletal and allometric changes due to zinc deficiency in the baby pig. The Journal of Nutrition, 95(2), 278-286.
Miller, J. K., & Miller, W. J. (1960). Development of zinc deficiency in Holstein calves fed a purified diet. Journal of Dairy Science, 43, 1854-1856.
Miller, J. K., & Miller, W. J. (1962). Experimental zinc deficiency and recovery of calves. The Journal of Nutrition, 76(4), 467-474.
Mishra, A. (2017). Effect of Supplementation of Nano Zinc Oxide on Zinc Bioavailability Immunomodulation Expression of Zinc Responsive Genes and Performance in Buffalo Calves (Doctoral dissertation, NDRI).
Mondal, S., Samanta, C. C., Bairagi, B., & Biswas, P. (2009). Effects of organic and inorganic forms of supplemental copper, zinc, iron and manganese at different dose levels on growth performance and plasma minerals in crossbred male calves. Animal Nutrition and Feed Technology, 9(1), 45-50.
Mousavi-Haghshenas, M. A., Hashemzadeh, F., Ghorbani, G. R., Ghasemi, E., Rafiee, H., & Ghaffari, M. H. (2022). Trace minerals source in calf starters interacts with birth weights to affect growth performance. Scientific Reports, 12(1), 18763.
Mutinati, M., Piccinno, M., Roncetti, M., Campanile, D., Rizzo, A., & Sciorsci, R. L. (2013). Oxidative stress during pregnancy in the sheep. Reproduction in Domestic Animals, 48(3), 353-357.
Olson, P. A., Brink, D. R., Hickok, D. T., Carlson, M. P., Schneider, N. R., Deutscher, G. H., ... & Johnson, A. B. (1999). Effects of supplementation of organic and inorganic combinations of copper, cobalt, manganese, and zinc above nutrient requirement levels on postpartum two-year-old cows. Journal of Animal Science, 77(3), 522-532.
Pasternak, K., Kocot, J., & Horecka, A. (2010). Biochemistry of magnesium. Journal of Elementology, 15(3), 601-616.
Pineda, O., & Ashmead, H. D. (2001). Effectiveness of treatment of iron-deficiency anemia in infants and young children with ferrous bis-glycinate chelate. Nutrition, 17(5), 381-384.
Richards, J. D., Zhao, J., Harrell, R. J., Atwell, C. A., & Dibner, J. J. (2010). Trace mineral nutrition in poultry and swine. Asian-Australasian Journal of Animal Sciences, 23(11), 1527-1534.
Rojas, M. A., Dyer, I. A., & Cassatt, W. A. (1965). Manganese deficiency in the bovine. Journal of Animal Science, 24(3), 664-667.
Sabry, M.E., & Wael, M.E. (2013). Acute phase proteins, lipid profile and proinflammatory cytokines in healthy and bronchopneumonic water buffalo calves. American Journal of Biochemistry and Biotechnology, 9(1), 34-40.
Salminen, A., Kauppinen, A., & Kaarniranta, K. (2015). 2-Oxoglutarate-dependent dioxygenases are sensors of energy metabolism, oxygen availability, and iron homeostasis: potential role in the regulation of aging process. Cellular and Molecular Life Sciences, 72, 3897-3914.
Schreiber, G., Howlett, G., Nagashima, M., Millership, A., Martin, H., Urban, J., & Kotler, L. (1982). The acute phase response of plasma protein synthesis during experimental inflammation. Journal of Biological Chemistry, 257(17), 10271-10277.
Shakweer, I. M. E., El-Mekass, A. A. M., & El-Nahas, H. M. (2010). Effect of two different sources of zinc supplementation on productive performance of Friesian dairy cows. Egyptian Journal of Animal Production, 47(1), 11-22.
Smith, A. D., Panickar, K. S., Urban Jr, J. F., & Dawson, H. D. (2018). Impact of micronutrients on the immune response of animals. Annual review of animal biosciences, 6, 227-254.
Spears, J. W. (1996). Organic trace minerals in ruminant nutrition. Animal Feed Science and Technology, 58(1-2), 151-163.
Suttle, N. F. (2022). Mineral nutrition of livestock. Cabi.
Tóthová, C., Nagy, O., & Kováč, G. (2014). Relationship between some variables of protein profile and indicators of lipomobilization in dairy cows after calving. Archives Animal Breeding, 57(1), 1-9.
Underwood, E. J., & Suttle, N. F. (1999). The mineral nutrition of livestock (No. Ed. 3, pp. ix+-614).
Yamamoto, M., Oohashi, T., Katoh, N., & Oikawa, S. (2000). Increased serum concentration of apolipoprotein C-III and its greater distribution to chylomicrons than to the high-density lipoprotein fraction in a calf with hyperlipidemia. Journal of Veterinary Medical Science, 62(10), 1033-1039.
Yaqoob, M.U., Wang, G., Sun, W., Pei, X., Liu, L., Tao, W., Xiao, Z., Wang, M., Huai, M., Li, L., & Pelletier, W. (2020). Effects of inorganic trace minerals replaced by complexed glycinates on reproductive performance, blood profiles, and antioxidant status in broiler breeders. Poultry Science, 99(5), 2718-2726.
Yin, L. H., Liu, X. P., Yi, L. Y., Wang, J., Zhang, Y. J., & Feng, Y. F. (2017). Structural characterization of calcium glycinate, magnesium glycinate and zinc glycinate. Journal of Innovative Optical Health Sciences, 10(03), 1650052.
Vaughan, J. M. (1970). The physiology of bone. Clarendon Press. Oxford.
Vohra, P., & Kratzer, F. H. (1957). The effect of dietary copper and molybdenum on turkey poults. Poultry Science, 36(5), 1096-1098.
Ward, J.D., Spears, J.W., Kegley, E.B., 1993. Effect of copper level and source (copper lysine vs. copper sulfate) on copper status, performance, and immune response in growing steers fed diets with or without supplemental molybdenum and sulfur. Journal of Animal Science, 71, 2748-2755.
Wang, R. L., Liang, J. G., Lu, L., Zhang, L. Y., Li, S. F., & Luo, X. G. (2013). Effect of zinc source on performance, zinc status, immune response, and rumen fermentation of lactating cows. Biological Trace Element Research, 152, 16-24.
Weimer, P. J. (1998). Manipulating ruminal fermentation: a microbial ecological perspective. Journal of Animal Science, 76(12), 3114-3122.
White, R., Giordano, S., & Datta, G. (2017). Role of HDL-associated proteins and lipids in the regulation of inflammation. Advances in Lipoprotein Research, 53.
Wimhurst, J. M., & Manchester, K. L. (1972). Comparison of ability of Mg and Mn to activate the key enzymes of glycolysis. FEBS letters, 27(2), 321-326.
Wright, C. L., & Spears, J. W. (2004). Effect of zinc source and dietary level on zinc metabolism in Holstein calves. Journal of Dairy Science, 87(4), 1085-1091.
Wo, Y., Jin, Y., Gao, D., Ma, F., Ma, Z., Liu, Z., Chu, K. and Sun, P. (2022). Supplementation With Zinc Proteinate Increases the Growth Performance by Reducing the Incidence of Diarrhea and Improving the Immune Function of Dairy Calves During the First Month of Life. Frontiers in Veterinary Science, 9, 911330.
Wu, A., Hinds, C. J., & Thiemermann, C. (2004). High-density lipoproteins in sepsis and septic shock: metabolism, actions, and therapeutic applications. Shock, 21(3), 210-221.
Zhang, L., Wang, Y. X., Xiao, X., Wang, J. S., Wang, Q., Li, K. X., ... & Zhan, X. A. (2017). Effects of zinc glycinate on productive and reproductive performance, zinc concentration and antioxidant status in broiler breeders. Biological Trace Element Research, 178, 320-326.