باقرزداه، قدسیه؛ منظری توکلی، مریم (1395). بررسی کمی و کیفی عوامل فیتوشیمیایی ضایعات زعفران (Crocus sativus L.) و اندازهگیری میزان آنتوسیانین با استفاده از امواج فرا صوت. نشریه پژوهشهای زعفران، 4 (2)، 149-158.
شیرعلی، سعید؛ بطحایی، سیده زهرا؛ نخجوانی، منوچهر؛ عاشوری، محمدرضا (1391). اﺛﺮ ﻋﺼﺎره آﺑﻲ زﻋﻔﺮان (Crocus sativus L.) بر فاکتورهای ﺑﻴﻮﺷﻴﻤﻴﺎﻳﻲ ﺳﺮم در ﻣﻮشﻫﺎیﺻﺤﺮاﻳﻲ دﻳﺎﺑﺘﻲﺷﺪه ﺑﺎ اﺳﺘﺮپتووزوﺗﻮﺳﻴﻦ. تحقیقات گیاهان دارویی و معطر ایران، 28 (2)، 293-308.
References
Alipour, F., Vakili, A., Danesh Mesgaran, M., & Ebrahimi, H. (2019). The effect of adding ethanolic saffron petal extract and vitamin E on growth performance, blood metabolites, and antioxidant status in Baluchi male lambs. Asian-Australian Journal of Animal Science, 32 (11), 1695-1704. https://doi.org/10.5713/ajas.18.0615.
Association of Official Analytical Chemists (AOAC). (2005). Official Methods of Analysis, 18th ed. AOAC International, Gaithersburg, MD. UAS.
Baghezade, GH., & Manzaritavakoli, M. (2016). Qualitative and Quantitative Investigation of Phytochemical Factors of Wastage of Crocus sativus L. and Determination of Anthocyanin Content using Ultrasound Waves. Journal of Saffron Research, 4 (2), 149-158. (In Persian)
Benzie, I.F., & Strain, J.J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Analytical Biochemistry, 239 (1), 70-76. https://doi.org/10.1006/abio.1996.0292.
Descalzo, A., & Sancho, A. (2008). A review of natural antioxidants and their effects on oxidative status, odor and quality of fresh beef produced in Argentina. Meat Science, 79(3), 423-436. https://doi.org/10.1016/j.meatsci.2007.12.006.
Ebrahimi, S., Fathi Nasri, M.H., & Farhangfar, S.H. (2024). Dietary supplementation of saffron petal elicits positive effects on performance, antioxidant status, and health of dairy goats. Small Ruminant Research, 231, 107179. https://doi.org/10.1016/j.smallrumres.2023.107179.
Esterbaure, H., & Cheeseman, K H. (1990). Determination of aldehydic lipid peroxidation products Malonaldehyde and 4-hydroxynonenal. Methods in Enzymology, 186, 407-421. https://doi.org/10.1016/0076-6879(90)86134-H.
Jabalbarezi Hukerdi, Y., Fathi Nasri, M.H., Rashidi, L., Ganjkhanlou, M., & Emami, A. (2019). Effects of dietary olive leaves on performance, carcass traits, meat stability and antioxidant status of fattening Mahabadi male kids. Meat Science, 153, 2-8. https://doi.org/10.1016/j.meatsci.2019.03.002.
Khamisabadi, H., Kafiladeh, F., & Charaien, B. (2016). Effect of thyme (Thymus vulgaris) or peppermint (Mentha piperita) on performance, digestibility and blood metabolites of fattening Sanjabi lambs. Biharean Biologist, 10 (2), 118-122.
Mastronikolis, S., Kagkelaris, K., Pagkalou, M., Tsiambas, E., Plotas, P., & Georgakopoulos, C. D. (2022). Antioxidant Defense and Pseudoexfoliation Syndrome: An Updated Review. Medical Science, 10 (4), 68. https://doi.org/10.3390/medsci10040068.
Omidi, A., Rahdari, S., & Fard, M.H. (2014). A preliminary study on antioxidant activities of saffron petal extracts in lambs. Veterinary Science Development, 4, 5161. https://doi.org/10.4081/vsd.2014.5161.
Paglia, D. E., & Valentine, W. N. (1967). Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. The Journal of Laboratory and Clinical Medicine, 70, 158-169. https://doi.org/10.5555/uri:pii:0022214367900765.
Placer, Z.A., Cushman, L.L., & Johnson, B. (1966). Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Analytical Biochemistry, 16 (2), 359-364. https://doi.org/10.1016/0003-2697(66)90167-9.
Ramos-Morales, E., Rossi, G., Cattin, M., Jones, E., Braganca, R., Newbold, C.J. (2018). The effect of an isoflavonid-rich liquorice extract on fermentation, methanogenesis and the microbiome in the rumen simulation technique. FEMS Microbiology Ecology, 94 (3), 9-17. https://doi.org/10.1093/femsec/fiy009.
Razavi, B.M., & Hosseinzadeh, H. (2017). Saffron: a promising natural medicine in the treatment of metabolic syndrome. Journal of the Science of Food and Agriculture, 97 (6), 1679–1685. https://doi.org/10.1002/jsfa.8134.
Samarghandian, S., Azimi-Nezhad, M., & Farkhondeh, T. (2016). Immunomodulatory and antioxidant effects of saffron aqueous extract (Crocus sativus L.) on streptozotocin-induced diabetes in rats. Indian Heart Journal, 69 (2), 151-159. https://doi.org/10.1016/j.ihj.2016.09.008.
Shirali, S., Bathayi, S., Nakhjavani, M., & Ashoori, M. (2012). Effects of saffron (Crocus sativus L.) aqueous extract on serum biochemical factors in streptozotocin-induced diabetic rats. Iranian Journal of Medicinal and Aromatic Plants Research, 28 (2), 293-308. https://doi.org/10.22092/ijmapr.2012.3045. (In Persian)
Shokrpour, M. (2019). Saffron (Crocus sativus L.) breeding: opportunities and challenges. Advances in Plant Breeding Strategies: Industrial and Food Crops, 675-706. https://doi.org/10.1007/978-3-030-23265-8_17.
Vaghar Seyedin, S. M., Mojtahedi, M., Farhangfar, S. H., Ghavipanje, N. (2022). Partial substitution of alfalfa hay by Berberis vulgaris leaf modulated the growth performance, meat quality and antioxidant status of fattening lambs. Veterinary Medicine and Science, 8, 2605-2615. https://doi.org/10.1002/vms3.934.
Van Keulen, J., & Young, B. (1977). Evaluation of acid-insoluble ash as a natural marker in ruminant digestibility studies. Journal of Animal Science, 44 (2), 282-287. https://doi.org/10.2527/jas1977.442282x.
Van Soest, P.J., Robertson, J.B., & Lewis, B.A. (1991). Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74 (10), 3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2.
Wali, A.F., Alchamat, H.A.A., Hariri, H.K., Hariri, B.K., Menezes, G.A., Zehra, U., Rehman, M.U., & Ahmad, P. (2020). Antioxidant, Antimicrobial, Antidiabetic and Cytotoxic Activity of Crocus sativus L. Petals. Applied Sciences, 10 (4), 1519. https://doi.org/10.3390/app10041519.
Yagoubi, Y., Srihi, H., Ben Saïd, S., Smeti, S., Mahouachi, M., & Atti, N. (2021). Diet digestibility, nitrogen balance, growth and carcass composition of barbarine lambs as affected by nitrogen source and rosemary residues substitution in concentrate. Animal Nutrition and Feed Technology, 21, 275-287. https://doi.org/10.5958/0974181X.2021.00023.8.
Youn, J.Y., Park, H.Y., & Cho, K.H. (2004). Antihyperglycemic activity of Commelina communis L.: inhibition of alpha-glucosidase. Diabetes Research and Clinical Practice, 66, 149-155. https://doi.org/10.1016/j.diabres.2003.08.015.
Zeka, K., Rupareli, K.C., Continenza, M.A., Stagos, D., Veglio, F., & Arroo, R.R. (2015). Petals of Crocus sativus L. as a potential source of the antioxidants crocin and kaempferol. Fitoterapia, 107, 128-134. https://doi.org/10.1016/j.ftote.2015.05.014.