Document Type : Research Paper

Authors

1 Ph.D. Student, Department of Animal Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran.

2 Associate Professor, Department of Animal Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran.

10.22059/JAP.2022.331536.623643

Abstract

Effect of different levels of calcium (0.6 and 0.3%), phytase (0 and 1500 FTU/kg), and citric acid (0 and 1%) in diets containing 0.15% of non-phytate phosphorus, on growth performance, carcass traits, and bone chemical properties were investigated using 882 10-day-old male broilers from 11 to 40 days of age in 2 × 2 × 2 factorial arrangements based on a completely randomized design including nine treatments (positive control and eight diets without any inorganic P) and seven replications. phytase supplementation increased average daily gain and gain to feed ratio, but the effect of phytase was more apparent in broiler chickens received diets containing 0.6% calcium at 25 to 40 days of age (P <0.01). Reducing dietary calcium levels decreased average daily gain (11 to 24 days) and gain to feed ratio (11 to 24 and 25 to 42 days). Also, the inclusion of citric acid in diets containing 0.3% calcium had a negative effect on these traits (P <0.01). The combination of phytase and citric acid in diets containing 0.6% Ca increased the feed efficiency compared to the 0.3% diet (P <0.01). Phytase supplementation increased toe ash and bone sodium percentage and decreased bone calcium and phosphorus concentration (P<0.01). Bone phosphorus decreased by reducing dietary calcium levels and phytase supplementation (P <0.01). The relative heart and pancreas weight decreased with phytase supplementation (P<0.05). Reducing dietary calcium levels increased the relative liver and pancreas weight and decreased abdominal fat and heart percentage (P<0.05). According to the results, the combination of phytase and citric acid in diets containing 0.6% calcium was more effective in improving growth performance of broilers fed diets containing low non-phytate phosphorus.

Keywords

1. Adedokun SA and Adeola O (2013) Calcium and 
phosphorus digestibility: Metabolic limits. 
Journal of Applied Poultry Research, 22:600-608. 
2. Akter M, Graham H and Iji PA (2016) Response 
of broiler chickens to different levels of calcium, non-phytate phosphorus and phytase. British Poultry Science, 57:799-809.3. Amerah AM, Plumstead PW, Barnard LP and 
Kumar A (2014) Effect of calcium level and 
phytase addition on ileal phytate degradation 
and amino acid digestibility of broilers fed 
corn-based diets. Poultry Science, 93: 906-915. 
4. AOAC (2005) Association of Official 
Agriculture Chemist. Official methods 
analysis. Washington. D. C. 
5. Aviagen (2018) Ross 308 Broiler Nutrition 
Specification. Aviagen Group. Huntsville 
Alabama, USA. 
6. Bedford M and Rousseau X (2017) Recent 
findings regarding calcium and phytase in 
poultry nutrition. Animal Production Science, 
57(11): 2311-2316. 
7. Centeno C, Arija I, Viveros A and Brenes A 
(2007) Effects of citric acid and microbial 
phytase on amino acid digestibility in broiler 
chickens. British Poultry Science, 48: 469-479. 
8. Demirel G, Pekel A.Y, Alp M and Kocabağlı N 
(2012) Effects of dietary supplementation of 
citric acid, copper, and microbial phytase on 
growth performance and mineral retention in 
broiler chickens fed a low available phosphorus 
diet. Journal of Applied Poultry Research, 21: 
335-347. 
9. Dersjant-Li Y, Evans C and Kumar A (2018) 
Effect of phytase dose and reduction in dietary 
calcium on performance, nutrient digestibility, 
bone ash and mineralization in broilers fed 
corn-soybean meal-based diets with reduced 
nutrient density. Animal Feed Science and 
Technology, 242: 95-110. 
10. Fik M, Hrnčár C, Hejniš D, Hanusová E, 
Arpášov H and Bujko J, 2021. The Effect of 
Citric Acid on Performance and Carcass 
Characteristics of Broiler Chickens. Scientific 
Papers Animal Science and Biotechnologies, 
54: 190-195. 
11. Khosravinia, H., Nourmohammadi, R. and 
Afzali, N. 2015. Productive performance, gut 
morphometry, and nutrient digestibility of 
broiler chicken in response to low and high 
dietary levels of citric acid. J. Appl. Poult. Res.
00: 1-11. 
12. Li T, Xing G, Shao Y, Zhang L, Li S, Lu L, 
Liu Z, Liao X and Luo X (2020) Dietary 
calcium or phosphorus deficiency impairs the 
bone development by regulating related 
calcium or phosphorus metabolic utilization 
parameters of broilers. Poultry Science, 99(6): 
3207-3214. 
13. Maenz DD, Engele-Schaan CM, Newkirk RW 
and Classen HL 1999. The effect of minerals 
and mineral chelators on the formation of 
phytase-resistant and phytase susceptible forms 
of phytic acid in solution and in a slurry of 
canola meal. Animal Feed Science and 
Technology, 81: 177-192. 
14. Mutucumarana RK, Ravindran V, Ravindran G 
and Cowieson AJ (2014) Measurement of true 
ileal digestibility and total tract retention of 
phosphorus in corn and canola meal for broiler 
chickens. Poultry Science, 93: 412-419. 
15. Paiva DM, Walk CL and McElroy A.P (2013) 
Influence of dietary calcium level, calcium 
source, and phytase on bird performance and 
mineral digestibility during a natural necrotic 
enteritis episode. Poultry Science, 92(12): 
3125-3133. 
16. Pieniazek J, Smith KA, Williams MP, Manangi 
M, Vazquez-Anon KM, Solbak A, Miller M and 
Lee JT (2016) Evaluation of increasing levels of a 
microbial phytase in phosphorus deficient broiler 
diets via live broiler performance, tibia bone ash,
apparent metabolizable energy, and amino acid 
digestibility. Poultry Science, 0: 1-13. 
17. Proszkowiec-Weglarz M and Angel R (2013) 
Calcium and phosphorus metabolism in 
broilers: Effect of homeostatic mechanism on 
calcium and phosphorus digestibility. Journal 
of Applied Poultry Research, 22: 609-627. 
18. SAS (2003) SAS User's Guide: Statistics. SAS 
Inst. Inc., Cary, NC, US. 
19. Shao Y, Xing G, Zhang L, Lyu L, Li S, Liao X 
and Luo X (2019) Effects of dietary calcium 
and phosphorus deficiency on growth 
performance, rickets incidence characters and 
tibia histological structure of broilers during 1 
to 21 days of age. Chinese Journal of Animal 
Nutrition, 31(5): 2107-2118. 
20. Sommerfeld V, Schollenberger M, Kühn I and 
Rodehutscord M (2019) Interactive effects of 
phosphorus, calcium, and phytase supplements 
on products of phytate degradation in the 
digestive tract of broiler chickens. Poultry 
Science, 97: 1177-1188. 
21. Taheri HR and Abasi MM (2020) Effect of 
high-dose phytase and low calcium 
concentration on performance of broiler 
chicken given diet severely limited in 
nonphytate phosphorus. Journal of Applied 
Poultry Research, 29: 817-829. 
22. Taheri HR and Mirisakhani L (2020) Effect of 
citric acid, vitamin D3, and high-dose phytase 
on performance of broiler chicken fed diet 
severely limited in non-phytate phosphorus. 
Livestock Science, 241: 104223. 
 23. UFFDA (1992) User Friendly Feed Formulation. 
University of Georgia, Athens, GA. 
24. Walk CL and Rao SR (2020) Increasing dietary 
phytate has a significant anti-nutrient effect on 
apparent ileal amino acid digestibility and 
digestible amino acid intake requiring 
increasing doses of phytase as evidenced by 
prediction equations in broilers. Poultry 
Science, 99(1): 290-300. 
25. Woyengo TA and Nyachoti CM (2013) Antinutritional effects of phytic acid in diets for 
pigs and poultry–current knowledge and 
directions for future research. Canadian Journal 
of Animal Science, 93(1):9-21.