Adeyemi, K. D., Sabow, A. B., Aghwan, Z. A., Ebrahimi, M., Samsudin, A. A., Alimon, A. R., & Sazilic, A. Q. (2016). Serum fatty acids, biochemical indices and antioxidant status in goats fed canola oil and palm oil blend. Journal of Animal Science and Technology, 58, 2-11. https://doi.org/10.1186/s40781-016-0088-2.
Ahlin, K. A., Emanuelson, M., & Wiktorsson, H. (1994). Rapeseed products from double-low cultivars as feed for dairy cows: Effects of long-term feeding on thyroid function, fertility and animal health. Acta Veterinaria Scandinavica, 35, 37-53. https://doi.org/10.1186/BF03548354.
AOAC. (1995). Official Methods of Analysis. 15th ed. Association of Official Analytical Chemists, Washington, DC.
Atkinson, R. L., Toone, C. D., Robinson, T. J., Harmon, D. L., & Ludden, P. A. (2007). Effects of supplemental ruminally degradable protein versus increasing amounts of supplemental ruminally undegradable protein on nitrogen retention, apparent digestibility, and nutrient flux across visceral tissues in lambs fed low-quality forage. Journal of Animal Science, 85, 3331-3339. https://doi.org/10.2527/jas.2006-418.
Avilés Ramírez, C., Peña Blanco, F., Horcada Ibáñez, A., Núñez Sánchez, N., Requena Domenech, F., Guzmán Medina, P., & Martínez Marín, A. L. (2018). Effects of concentrates rich in by-products on growth performance, carcass characteristics and meat quality traits of light lambs. Animal Production Science, 59(3), 593-599. https://doi.org/10.1071/AN17798.
Barnett, A. J. G., & Reid, R. L. (1957). Studies on production of volatile fatty acids from grass by rumen liquid in an artificial rumen. Journal of Agricultural Science, 48: 315-321. https://doi.org/10.1017/S0021859600031671.
Broderick, G. A., & Kang, J. H. (1980). Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. Journal of Dairy Science, 63, 64-75. https://doi.org/10.3168/jds.S0022-0302(80)82888-8.
Cherian, G., Campbell, A., & Parker, T. (2009). Egg quality and lipid composition of eggs from hens fed camelina sativa. Journal of Applied Poultry Research, 18 (2), 143-150. https://doi.org/10.3382/japr.2008-00070.
Cooke, R. F., Bohnert, D. W., Moriel, P., Hess, B.W., & Mills, R. R. (2011). Effects of polyunsaturated fatty acid supplementation on ruminal in situ forage degradability, performance, and physiological responses of feeder cattle. Journal of Animal Science, 89, 3677-3689. https://doi.org/10.2527/jas.2010-3515.
Dehority, B. A. (2003). Rumen microbiology. Nottingham University Press, Nottingham. UK.
Didara, M., Poljicak-Milas, N., Milinkovic-Tur, S., Masek, T., Suran, J., Pavic, M., Kardum, M., & Speranda, M. (2015). Immune and oxidative response to linseed in the diet of periparturient Holstein cows. Animal, 9, 1349-1354. https://doi.org/10.1017/S1751731115000439.
Gobert, M., Martin, B., Ferlay, A., Chilliard, Y., Graulet, B., Pradel, P., Bauchart, D., & Durand, D. (2009). Plant polyphenols associated with vitamin E can reduce plasma lipoperoxidation in dairy cows given n-3 polyunsaturated fatty acids. Journal of Dairy Science, 92, 6095-6104. https://doi.org/10.3168/jds.2009-2087
Grings, E. E., Sackey, A., & Perry, G.A. (2014). Comparison of camelina meal and DDGS in the diet of replacement beef heifers. Journal of Dairy Science, 97 (E-Suppl.), 725.
Halmemies-Beauchet-Filleau, A., Shingfield, K. J., Simpura, I., Kokkonen, T., Jaakkola, S., Toivonen, V., & Vanhatalo, A. (2017). Effect of incremental amounts of camelina oil on milk fatty acid composition in lactating cows fed diets based on a mixture of grass and red clover silage and concentrates containing camelina expeller. Journal of Dairy Science, 100 (1), 305-324. https://doi.org/10.3168/jds.2016-11438
Hurtaud, C., & Peyraud, J. L. (2007). Effects of feeding camelina (seeds or meal) on milk fatty acid composition and butter spreadability. Journal of Dairy Science, 90, 5134-5145. https://doi.org/10.3168/jds.2007-0031,
Jenkins, T. C., Wallace, R. J., Moate, P. J., & Mosley, E.E. (2008). Resent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem. Journal of Animal Science, 86, 397-412. https://doi.org/10.2527/jas.2007-0588.
Kahrizi, D., Rostami, H., & Akbarabadi, A. (2015). Feasibility cultivation of camelina (Camelina sativa) as medicinal-oil plant in rain fed condition in Kermanshah-Iran's first report. Journal of Medicinal Plant and By-Products, 2, 215-218. https://doi.org/10.22092/JMPB.2015.108911.
Lawrence, R. D., Anderson, J. L., & Clapper, J. A. (2016). Evaluation of camelina meal as a feedstuff for growing dairy heifers. Journal of Dairy Science, 99, 1-14. https://doi.org/10.3168/jds.2016-10876.
Martin, C., Morgavi, D. P., & Doreau, M. (2010). Methane mitigation in ruminants: from microbe to the farm scale. Animal, 4, 351-365. https://doi.org/10.1017/S1751731109990620.
McVay, K. A., & Lamb, P. E. (2008). Camelina Production in Montana. Montana State University Extension Publication. Bozeman, Montana, USA.
Moriel, P., Nayigihugu, V., Cappellozza, B. I., Goncalves, E. P., Krall, J. M., Foulke, T., Cammack, K. M., & Hess, B. W. (2011). Camelina meal and crude glycerin as feed supplements for developing replacement beef heifers. Journal of Animal Science, 89, 4314-4324. https://doi.org/10.2527/jas.2010-3630.
Nazari, S., Azizi, A., Kiani, A., & Sharifi, A. (2022). Effect of substituting different levels of Camellina sativa meal instead of soybean meal on performance, rumen fermentation parameters, blood metabolites, and feeding behavior of fattening lambs. Animal Production Research, 11(2), 17-30. (In Persian). http://doi: 10.22124/AR.2022.21052.1661.
NRC (2007). Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervide, and New World Camelids. National Academy of Science, Washington, DC. USA.
Rahmatizadeh, M., Hozhabri, F., & Kafilzadeh, F. (2023) The effect of adding a mixture of peppermint, thyme and rosemary essential oils to diet on growth performance, rumen fermentation parameters and blood metabolites of fattening lambs. Iranian Journal of Animal Science, 53(4), 273-285. (In Persian). http://doi: 10.22059/ijas.2022.340407.653879.
Tripathi, M. K., & Mishra, A. S. (2007). Glucosinolates in animal nutrition: a review. Animal Feed Science and Technology, 132 (1-2), 1-27. https://doi.org/10.1016/j.anifeedsci.2006.03.003.
Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods of dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74, 3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2.
Waraich, E. A., Ahmed, Z., Ahmad, R., Ashraf, M. Y., Naeem, S. M. S., & Rengel, Z. (2013). Camelina sativa, a climate proof crop, has high nutritive value and multiple-uses: A review. Australian Journal of Crop Science, 7 (10), 1551-1559. http://www.cropj.com/waraich_7_10_2013_1551_1559.pdf
Woyengo, T. A., Beltranena, E., & Zijlstra, R. T. (2017). Effect of anti-nutritional factors of oilseed co-products on feed intake of pigs and poultry. Animal Feed Science and Technology, 233, 76-86. https://doi.org/10.1016/j.anifeedsci.2016.05.006.