Document Type : Research Paper

Authors

1 Campus of Agriculture and Natural Resources, University of Tehran

2 Campus of Agriculture and Natural Resources, University of Tehran, Specialty: Genetics and Animal Breeding / Molecular Genetics

3 University of Tehran

4 Assistant Professor, University of Tehran, Aborayhan Campus

Abstract

The aim of current study was to evaluate the accuracy of genomic breeding values (GEBV) for two important economical traits of milk yield and somatic cell score using SNP markers and LD-based haplotype blocks (haploblocks) by two statistical methods of GBULP and Bayes B. The data set consisted of 1654 bulls genotyped with different marker densities. When SNPs were used, the accuracy of breeding values obtained by Bayes B was better than GBLUP. In other words, for milk yield and somatic cell score traits, the prediction accuracy of GBLUP was 0.54 and 0.44 and by Bayes B was 0.58 and 0.44,
respectively. For milk yield, the prediction accuracy of using haploblocks in both statistical methods was higher than the prediction accuracy using SNPs, while for the somatic cell score, this increase was more pronounced when GBLUP was used. However, when Bayes B was used this superiority was only obtained when the r2 statistic used to build the haploblocks was higher than 0.2. The results showed that the optimum level of r2 for building haploblocks depends on the trait type and its heritability. As a result, using r2 statistic more than 0.2 for building haploblocks can increase the accuracy of breeding values
foe both traits compared to SNP markers.

Keywords

1. Ali AKA, Shook GE (1980) An optimum transformation for somatic cell concentration in milk. J Dairy Sci 63: 487-490.
2. Barrett J, Fry B, Maller J and Daly M (2004) Haploview analysis and visualization of LD and haplotype maps. Bioinformatics 21(2): 263-265.
3. Boichard D, Guillaume F, Baur A, Croiseau P, Rossignol MN, Boscher MY, Druet T, Genestout LUCIE, Colleau JJ, Journaux L and Ducrocq V (2012) Genomic selection in French dairy cattle. Animal Production Science 52(3): 115-120
4. Calus MPL, De Roos APW and Veerkamp RF (2008) Accuracy of genomic selection using different methods to define haplotypes. Genetics 178(1): 553-561.
5. Curtis D, North BV, Sham PC (2001) Use of an artificial neural network to detect association between a disease and multiple marker genotypes. Ann Hum Genet 65: 95-107.
6. Cuyabano, B.C., Su, G. and Lund, M.S (2014) Genomic prediction of genetic merit using LDbased
haplotypes in the Nordic Holstein population. BMC genomics 15(1): 1171.
7. Daetwyler HD, Calus MPL, Pong-Wong R, De Los Campos G and Hickey JM (2013) Genomic prediction in animals and plants: simulation of data, validation, reporting, and benchmarking. Genetics. 193: 347-365.
8. De los Campos G and Perez PR (2012) Bayesian Generalized Linear Regression BGLR. R Package. http://bglr.rforge.rproject.org/
9. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, Higgins J, DeFelice
M, Lochner A, Faggart M and Liu-Cordero SN (2002) The structure of haplotype blocks in the human genome. Science 296(5576): 2225-2229.
10. Goddard ME, Hayes BJ and Meuwissen TH (2010) Genomic selection in livestock populations. Genetics research, 92(5-6): 413-421.
11. Hill WG and Robertson A (1968) Linkage disequilibrium in finite populations. Theoretical and Applied Genetics 38(6): 226-231.
12. Hotelling H (1940) The selection of variates for use in predictions with some comments on
the problem of nuisance parameters. AnnMath Stat 11: 271-283.
13. McRae AF, McEwan JC, Dodds JC, Wilson T, Crawford AM, Slate J (2002) Linkage disequilibrium in domestic sheep. Genetics 160: 1113-1122.
14. Meuwissen TH, Hayes BJ and Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics, 157(4): 1819-1829.
15. Mohammadi Y, Shariati MM, Zerehdaran S, Razmkabir M, Sayyadnejhad MB and Zandi MB (2016) Comparison of accuracy of genomic breeding value estimation for production traits in Iranian Holstein cattle by parametric and nonparametric methods. Journal of Animal Production 18(1): 1-11. (in Persian)
16. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR and Bender D (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics 81: 559-575.
17. Sargolzaei M, Schenkel FS, Jansen JB and Schaeffer LR (2008) Extent of linkage disequilibrium in Holstein cattle in North America.J. Dairy Sci. 91: 2106-2117.
18. Sargolzaei M, Chesnais JP and Schenkel FS (2014) A new approach for efficient genotype imputation using information from relatives. BMC Genomics (15): 478.
19. Schrooten C, Schopen GCB, Parker A, Medley A and Beatson P (2013) Across-breed genomic
 based on bovine high density genotypes and phenotypes of bulls and cows. In Proc Assoc Advmt Anim Breed Genet (20): 138-141.
20. VanRaden PM, Van Tassell CP, Wiggans GR, Sonstegard TS, Schnabel RD, Taylor JF and Schenkel FS (2009) Invited review: Reliability of genomic predictions for North American Holstein bulls. J Dairy Sci 92: 16-24.
21. VanRaden PM (2008) Efficient methods to compute genomic predictions. Journal of dairy science 91(11): 4414-4423.
22. Villumsen TM, Janss L and Lund MS (2008) The importance of haplotype length and heritability using genomic selection in dairy cattle. Journal of Animal Breeding and Genetics 126(1): 3-13.
23. Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, Madden PA, Heath AC, Martin NG, Montgomery GW and Goddard ME (2010) Common SNPs explain alarge proportion of the heritability for human height. Nature genetics 42(7): 565-569.