Document Type : Research Paper

Authors

1 Department of Animal Science, Faculty of Agriculture, Razi University, Kermanshah, Iran. E-mail: hashemi.pa@razi.ac.ir

2 Corresponding Author, Department of Animal Science, Faculty of Agriculture, Razi University, Kermanshah, Iran. E-mail: taherabadi.le@razi.ac.ir

3 Department of Animal Science, Faculty of Agriculture, Razi University, Kermanshah, Iran. E-mail: Kafilzadeh@razi.ac.ir

Abstract

Objective: Ensilage is one of the methods of preserving forage plants for livestock feeding. The use of carbohydrate sources in  silage preparation can improve the quality of anaerobic fermentation by increasing the concentration of lactic acid. Aerobic stability of silage after exposure to air is one of the quality parameters of silages. Heterofermentative lactic acid bacteria are among the additives that have been used to improve the aerobic stability of silages. However, there is no information on the use of the Lactobacillus fermentum on the aerobic stability of Napier grass silage with or without the use of carbohydrate sources. Therefore, this research was conducted to study the effect of Lactobacillus fermentum 92069 and molasses on fermentation properties, aerobic stability and in vitro digestibility of Napier grass silage as a new forage source (introduced for the first time) in the country.
Methods: Napier grass was cultivated in the research farm of the Faculty of Agriculture, Razi University on May 2021. To prepare silage, the forage was harvested, chopped and treated with 0, 3 or 6 percent molasses with or without 0, 1× 106 cfu or 2×106 cfu of Lactobacillus Fermentum 92069 per gram of fresh forage and then  ensiled in laboratory silos with four replicates. After 90 days of ensiling, the chemical composition and fermentation products of the silages such as lactic acid, butyric acid, acetic acid, ammonia nitrogen and in vitro digestibility were determined. The fungal population of the silages including yeast and mold was also determined. During the aerobic fermentation process, aerobic stability of the silages and changes in pH and the population of fungal in the silages were also measured.
Results: Increasing the level of molasses was associated with an increase in dry matter and soluble carbohydrates in silage. The lowest pH values ​​ (3.90 to 3.97) with higher production of lactic acid concentration (47.9 to 53.3 g/kg dry matter) were observed in silages containing the high level of molasses with or without bacterial inoculant. The addition of Lactobacillus fermentum increased acetic acid production, but had no effect on the aerobic stability of the silage. There was no difference in the fungi population of silages among treatments. Dry matter and organic matter digestibility, as well as metabolizable energy, were higher in silages containing molasses with or without bacterial inoculants. 
Conclusion: The results of the present study showed that Napier grass silage without additives was of good quality. However, the use of molasses resulted in improved anaerobic fermentation and digestibility. The aerobic stability of Napier grass silages in spite of an increase in acetic acid was not affected by the addition of the Lactobacillus fermentum up to 2 ×106 cfu/ g fresh forage.

Keywords

طاهرآبادی، لیلا و کفیل‌زاده، فرخ (1402). ارزش غذایی علف نپیر در مراحل مختلف رشد. تولیدات دامی، 25(1)، 83-91. https://doi:10.22059/jap.2023.350164.623711
طاهرآبادی، لیلا و کفیل‌زاده، فرخ (1402). اثر فواصل برداشت در مراحل مختلف رشد بر عملکرد و ارزش غذایی علف نپیر. تولیدات دامی، 25(2)، 169-181. https://doi:10.22059/jap.2023.355929.623735
طاهرآبادی، لیلا و کفیل‌زاده، فرخ (1400). اثر لاکتوباسیلوس فرمنتوم جداشده از ماست بر کیفیت تخمیر و پایداری هوازی سیلاژ ذرت با رطوبت بالا. تولیدات دامی، 23(3)، 387-394. https://doi:10.22059/jap.2021.318579.623593
Reference
Amado, I. R., Fuciños, C., Fajardo, P., Guerra, N. P., & Pastrana, L. (2012). Evaluation of two bacteriocin-producing probiotic lactic acid bacteria as inoculants for controlling Listeria monocytogenes in grass and maize silages. Animal Feed Science and Technology175(3-4), 137-149. https://doi.org/10.1016/j.anifeedsci.2012.05.006
Association of Official Analytical Chemists, A. O. A. C. (2005). Official method of Analysis (18th ed). Washington, DC: Association of Officiating Analytical Chemists, method 935.14 and 992.24. [Scientific Research]
Arriola, K. G., Oliveira, A. S., Jiang, Y., Kim, D., Silva, H. M., Kim, S. C., ... & Adesogan, A. T. (2021). Meta-analysis of effects of inoculation with Lactobacillus buchneri, with or without other bacteria, on silage fermentation, aerobic stability, and performance of dairy cows. Journal of Dairy Science104(7), 7653-7670. https://doi.org/10.3168/jds.2020-19647
Barker, S. B., & Summerson, W. H. (1941). The colorimetric determination of lactic acid in biological material. Biological Chemistry, 138 (2), 535-554. [Google Scholar]
Broderick, G. A. (1987). Determination of protein degradation rates using a rumen in vitro system containing inhibitors of microbial nitrogen metabolism. British Journal of Nutrition58(3), 463-475. [Google Scholar]
Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. T., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical chemistry28(3), 350-356. [Google Scholar]
Garcez Neto, A. F., dos Santos, T. M., da Silva, J., & Fernandes, S. R. (2021). Effect of whey permeate and lactobacillus buchneri on biomass conservation, chemical characteristics and aerobic stability of elephant grass silage. Waste and Biomass Valorization12, 879-893.  https://doi.org/10.1007/s12649-020-01035-z
Guan, H., Shuai, Y., Ran, Q., Yan, Y., Wang, X., Li, D., ... & Zhang, X. (2020). The microbiome and metabolome of Napier grass silages prepared with screened lactic acid bacteria during ensiling and aerobic exposure. Animal Feed Science and Technology269, 114673. https://doi.org/10.1016/j.anifeedsci.2020.114673  
Jalč, D., Lauková, A., Simonová, M., Váradyová, Z., & Homolka, P. (2009). The use of bacterial inoculants for grass silage: their effects on nutrient composition and fermentation parameters in grass silages. Czech Journal of Animal Science54(2), 84-91. [Google Scholar]
Li, M., Zi, X., Zhou, H., Hou, G., & Cai, Y. (2014). Effects of sucrose, glucose, molasses and cellulase on fermentation quality and in vitro gas production of king grass silage. Animal Feed Science and Technology197, 206-212. https://doi.org/10.1016/j.anifeedsci.2014.06.016
Li, M., Zi, X., Zhou, H., Lv, R., Tang, J., & Cai, Y. (2021). Effect of lactic acid bacteria, molasses, and their combination on the fermentation quality and bacterial community of cassava foliage silage. Animal Science Journal92(1), e13635.   https://doi.org/10.1111/asj.13635
McDonald, P., Henderson, A. R., & Heron, S. J. E. (1991). The biochemistry of silage (pp. 340-pp). [Google Scholar]
McDougall, E. I. (1948). Studies on ruminant saliva. 1. The composition and output of sheep's saliva. Biochemical journal, 43(1), 99. [Google Scholar]
Minson, D. J. (1984). Digestibility and voluntary intake by sheep of five Digitaria species. Australian Journal of Experimental Agriculture, 24 (127), 494-500. [Google Scholar]
Negawo, A. T., Teshome, A., Kumar, A., Hanson, J., & Jones, C. S. (2017). Opportunities for Napier grass (Pennisetum purpureum) improvement using molecular genetics. Agronomy7(2), 28.
Rabie, C. J., Lübben, A., Marais, G. J., & Van Vuuren, H. J. (1997). Enumeration of fungi in barley. International Journal of Food Microbiology35(2), 117-127. https://doi.org/10.1016/S0168-1605(96)01210-X
Ranjit, N. K., & Kung Jr, L. I. M. I. N. (2000). The effect of Lactobacillus buchneri, Lactobacillus plantarum, or a chemical preservative on the fermentation and aerobic stability of corn silage. Journal of Dairy Science83(3), 526-535. https://doi.org/10.3168/jds.S0022-0302(00)74912-5
Rooke, J. A., & Kafilzadeh, F. (1994). The effect upon fermentation and nutritive value of silages produced after treatment by three different inoculants of lactic acid bacteria applied alone or in combination. Grass and Forage Science, 49(3), 324-333. https://doi.org/10.1111/j.1365-2494.1994.tb02007.x
Rooke, J. A., & Kafilzadeh, F. (1991). The voluntary intake and digestibility by sheep of grass silages treated with different silage inoculants. Proceedings of the British Society of Animal Production (1972)1991, 82-82.  https://doi.org/10.1017/S0308229600020328
Santos, A. O., Ávila, C. L. S., Pinto, J. C., Carvalho, B. F., Dias, D. R., & Schwan, R. F. (2016). Fermentative profile and bacterial diversity of corn silages inoculated with new tropical lactic acid bacteria. Journal of Applied Microbiology120(2), 266-279. https://doi.org/10.1111/jam.12980
Silva, L. D., Pereira, O. G., Silva, T. C., Leandro, E. S., Paula, R. A., Santos, S. A., ... & Valadares Filho, S. C. (2018). Effects of Lactobacillus buchneri isolated from tropical maize silage on fermentation and aerobic stability of maize and sugarcane silages. Grass and Forage Science73(3), 660-670. https://doi.org/10.1111/gfs.12360
Stewart, C.S., and Duncan, S.H. (1985). The effect of avoparcin on cellulolytic bacteria of the ovine rumen. Microbiology131(3), 427-435. https://doi.org/10.1099/00221287-131-3-427
Suong, N. T. M., Paengkoum, S., Purba, R. A. P., & Paengkoum, P. (2022). Optimizing anthocyanin-rich black cane (Saccharum sinensis Robx.) silage for ruminants using molasses and iron sulphate: A sustainable alternative. Fermentation8(6), 248. https://doi.org/10.3390/fermentation8060248
Tilley, J. M. A., & Terry, D. R. (1963). A two‐stage technique for the in vitro digestion of forage crops. Grass and forage science, 18(2), 104-111.  https://doi.org/10.1111/j.1365-2494.1963.tb00335.x
Taherabadi, L., & Kafilzadeh, F. (2021). Effect of Lactobacillus fermentum isolated from yogurt on fermentation quality and aerobic stability of high moisture corn silage. Animal Production23(3), 387-394. (In Persian). https://doi:10.22059/jap.2021.318579.623593
Taherabadi, L., & Kafilzadeh, F. (2023). Effect of harvesting interval in different stages of growth on yield and nutritive value of Napier grass. Animal Production25(2), 169-181. (In Persian). https://doi:10.22059/jap.2023.355929.623735
Taherabadi, L., & Kafilzadeh, F. (2023). Nutritive value of Napier grass at different growth   stages. Animal Production25(1), 83-91. (In Persian). https://doi:10.22059/jap.2023.350164.623711
Van Soest, P. V., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of dairy science74(10), 3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
Weinberg, Z. G., Shatz, O., Chen, Y., Yosef, E., Nikbahat, M., Ben-Ghedalia, D., & Miron, J. (2007). Effect of lactic acid bacteria inoculants on in vitro digestibility of wheat and corn silages. Journal of dairy science90(10), 4754-4762. https://doi.org/10.3168/jds.2007-0176
Weinberg, Z. G., Muck, R. E., & Weimer, P. J. (2003). The survival of silage inoculant lactic acid bacteria in rumen fluid. Journal of Applied Microbiology, 94(6), 1066-1071. https://doi.org/10.1046/j.1365-2672.2003.01942.x
Yokota, H., Fujii, Y., & Ohshima, M. (1998). Nutritional quality of Napier grass (Pennisetum purpureum Schum.) silage supplemented with molasses and rice bran by goats. Asian-Australasian Journal of Animal Sciences11(6), 697-701. https://doi.org/10.5713/ajas.1998.697
Zhang, L., Li, X., Wang, S., Zhao, J., Dong, Z., Zhao, Q., ... & Shao, T. (2022). Effect of Sorbic Acid, ethanol, Molasses, previously fermented juice and combined additives on ensiling characteristics and nutritive value of Napier grass (Pennisetum purpureum) silage. Fermentation8(10), 528. https://doi.org/10.3390/fermentation8100528
Zi, X., Li, M., Yu, D., Tang, J., Zhou, H., & Chen, Y. (2021). Natural fermentation quality and bacterial community of 12 Pennisetum sinese varieties in Southern China. Frontiers in Microbiology12, 627820.  https://doi.org/10.3389/fmicb.2021.627820