روحانیپور، حسن؛ شریفی، داود و ایراجیان، غلامحسین (۱۴۰۰). تأثیر استفاده از ال-کارنیتین و اسیدهای چرب امگا-۳ در جیره بر ریختشناسی بافت کبد، روده و اویداکت مرغهای تخمگذار. پژوهشهای تولیدات دامی، 12(۳۱)، ۴۲-۳۱.
References
Abdulrazzaq, A. H., Alrawi, S. T. J., & Alkubaisi, A. B. (2019). The effect of different concentrations of copper sulfate on the some physiological and immunological parameters of local male rabbits. Drug Invention Today, 12(11), 26-54.
Aguzey, H. A., Gao, Z., Haohao, W., Guilan, C., Zhengmin, W., Junhong, C., & Li, N. Z. (2020). The role of arginine in disease prevenTion, guT microbioTa modulaTion, growTh performance and The immune sysTem of broiler chicken–a review. Annals of Animal Science, 20(2), 325-341.
Akbari, M. K. R., Golian, A., & Zarghi, H. (2016). Effect of digestible methionine+cystine concentration on performance, egg quality and blood metabolites in laying hens. British Poultry Science, 57(3), 403-414.
Alagawany, M., Farag, M. R., Dhama, K., & Patra, A. (2018). Nutritional significance and health benefits of designer eggs. World's Poultry Science Journal, 74, 317-330.
Alotaibi, M. M., Alhimaidi, A. R., Al-Ghadi, M. Q., Ammari, A. A., & Al-Malahi, N. M. (2022). Evaluation of the maturity and gene expression of sheep oocytes and embryos cultured in media supplemented with marjoram (Origanum vulgare) extract. Genes, 13(10), 1844.
Bahry, M. A., Hanlon, C., Ziezold, C. J., Schaus, S., & Bédécarrats, G. Y. (2023). Impact of growth trajectory on sexual maturation in layer chickens. Frontiers in Physiology, 14, 1174238.
Basiouni, G. F. (2009). The effect of feeding an extra amounts of arginine to local Saudi hens on luteinizing hormone secretion. Journal of Biological Sciences, 9(6), 617-620.
Bernard, M., Lecoeur, A., Coville, J. L., Bruneau, N., Jardet, D., Lagarrigue, S., & Zerjal, T. (2024). Relationship between feed efficiency and gut microbiota in laying chickens under contrasting feeding conditions. Scientific Reports, 14(1), 8210.
Carvalho, D. P., & Dupuy, C. (2017). Thyroid hormone biosynthesis and release. Molecular and Cellular Endocrinology, 458, 6-15.
Dao, H. T., Sharma, N. K., Bradbury, E. J., & Swick, R. A. (2021). Response of laying hens to l-arginine, l-citrulline and guanidinoacetic acid supplementation in reduced protein diet. Animal Nutrition, 7(2), 460-471.
Deo, C., Mandal, A. B., & Tyagi, P. K. (2018). Response of supplementary sources and levels of copper in diet on the performance of broiler chickens. Animal Nutrition and Feed Technology, 18(1), 89-96.
Di Giancamillo, A., Rossi, R., Martino, P. A., Aidos, L., Maghin, F., Domeneghini, C., & Corino, C. (2018). Copper sulphate forms in piglet diets: Microbiota, intestinal morphology and enteric nervous system glial cells. Animal Science Journal, 89(3), 616-624.
Dong, Y., Zhang, K., Han, M., Miao, Z., Liu, C., & Li, J. (2022). Low level of dietary organic trace minerals improved egg quality and modulated the status of eggshell gland and intestinal microflora of laying hens during the late production stage. Frontiers in Veterinary Science, 9, 920418.
Duan, L., Cheng, Y., & Jin, Y. (2010). Effect of copper intake and copper-zinc ratio on rat lipid peroxidation in copper deficiency. Journal of Hygiene Research, 39(1), 25-28.
Elsherif, H., Fouad, A., Nassar, S., Wahba, F., Elsabagh, M., & El-Iraqi, K. (2019). Effect of dietary copper sulphate on laying hen performance, egg quality, and oxidative stress in hot climate conditions. European Poultry Science/Archiv für Geflügelkunde, 83, 275.
Eusemann, B. K., Baulain, U., Schrader, L., Thöne-Reineke, C., Patt, A., & Petow, S. (2018). Radiographic examination of keel bone damage in living laying hens of different strains kept in two housing systems. PloS one, 13(5), 0194974.
Fathima, S., Al Hakeem, W. G., Shanmugasundaram, R., Periyannan, V., Varadhan, R., & Selvaraj, R. K. (2024). Effect of 125% and 135% arginine on the growth performance, intestinal health, and immune responses of broilers during necrotic enteritis challenge. Poultry Science, 103(7), 103826.
Fleming, R. H., McCormack, H. A., McTeir, L., & Whitehead, C. C. (2006). Relationships between genetic, environmental and nutritional factors influencing osteoporosis in laying hens. British Poultry Science, 47(6), 742-755.
Green, L., Coronado-Zamora, M., Radío, S., Rech, G. E., Salces-Ortiz, J., & González, J. (2022). The genomic basis of copper tolerance in Drosophila is shaped by a complex interplay of regulatory and environmental factors. BMC Biology, 20(1), 275.
Godswill, A. G., Somtochukwu, I. V., Ikechukwu, A. O., & Kate, E. C. (2020). Health benefits of micronutrients (vitamins and minerals) and their associated deficiency diseases: A systematic review. International Journal of Food Sciences, 3(1), 1-32.
Hao, E. Y., Wang, D. H., Chen, Y. F., Zhou, R. Y., Chen, H., & Huang, R. L. (2021). The relationship between the mTOR signaling pathway and ovarian aging in peak-phase and late-phase laying hens. Poultry Science, 100(1), 334-347.
Hanlon, C., Takeshima, K., Kiarie, E. G., & Bédécarrats, G. Y. (2022). Bone and eggshell quality throughout an extended laying cycle in three strains of layers spanning 50 years of selection. Poultry Science, 101(3), 101672.
Hincke, M. T., Nys, Y., Gautron, J., Mann, K., Rodriguez-Navarro, A. B., & McKee, M. D. (2012). The eggshell: structure, composition and mineralization. Frontiers in Bioscience, 17(1), 1266-1280.
Kirunda, D. F. K., & McKee, S. R. (2000). Relating quality characteristics of aged eggs and fresh eggs to vitelline membrane strength as determined by a texture analyzer. Poultry Science, 79(8), 1189-1193.
Lou, Q., Li, T., Wu, P., Qiu, C., Zhang, G., & Wang, J. (2019). Polymorphism identification in GDF9 gene and its association analysis with reproduction traits in Jinghai Yellow chicken. Animal Biotechnology, 30(4), 332-341.
Mabe, I., Rapp, C., Bain, M. M., & Nys, Y. (2003). Supplementation of a corn-soybean meal diet with manganese, copper, and zinc from organic or inorganic sources improves eggshell quality in aged laying hens. Poultry Science, 82(12), 1903-1913.
Mariotti, M., Ridge, P. G., Zhang, Y., Lobanov, A. V., Pringle, T. H., Guigo, R., & Gladyshev, V. N. (2012). Composition and evolution of the vertebrate and mammalian selenoproteomes. PloS one, 7(3), 33066.
Mishra, S. K., Chen, B., Zhu, Q., Xu, Z., Ning, C., Yin, H., & Li, D. (2020). Transcriptome analysis reveals differentially expressed genes associated with high rates of egg production in chicken hypothalamic-pituitary-ovarian axis. Scientific Reports, 10(1), 5976.
Najib, H., & Basiouni, G. (2004). Determination of the nutritional requirements of Baladi chickens: 1. Effect of Arginine inclusion, in excess of the leghorn requirement, on performance of the Saudi baladi chickens. Journal of King Faisal University Basic and Applied Sciences, 5, 131-144.
Ognik, K., & Krauze, M. (2016). The potential for using enzymatic assays to assess the health of turkeys. World's poultry science journal, 72(3), 535-550.
Paul, B. N., Chanda, S., Das, S., Singh, P., Pandey, B. K., & Giri, S. S. (2014). Mineral assay in atomic absorption spectroscopy. The Beats of Natural Sciences, 4(1), 1-17.
Pekel, A. Y., & Alp, M. (2011). Effects of different dietary copper sources on laying hen performance and egg yolk cholesterol. Journal of Applied Poultry Research, 20(4), 506-513.
Qiu, J. L., Zhou, Q., Zhu, J. M., Lu, X. T., Liu, B., Yu, D. Y., & Xu, J. M. (2020). Organic trace minerals improve eggshell quality by improving the eggshell ultrastructure of laying hens during the late laying period. Poultry Science, 99(3), 1483-1490.
Rouhanipour, H., Sharifi, D., & Irajian, G. H. (2021). The effect of L-carnitine and omega-3 fatty acids in the diet on morphology of liver, intestine and oviduct of laying hens. Research on Animal Production, 12(31), 31-42.(In Persian)
Santos, M. J., Ludke, M. C., Silva, L. M., Rabello, C. B., Barros, M. R., Costa, F. S., & Wanderley, J. S. (2024). Complexed amino acid minerals vs. bis-glycinate chelated minerals: Impact on the performance of old laying hens. Animal Nutrition, 16, 395-408.
Saini, H. S., & Wratten, N. (1987). Quantitative determination of total glucosinolates in rapeseed and meal digests. Journal of the Association of Official Analytical Chemists, 70(1), 141-145.
Sun, M., Ma, N., Liu, H., Liu, Y., Zhou, Y., Zhao, J., & Lin, H. (2022). The optimal dietary arginine level of laying hens fed with low-protein diets. Journal of Animal Science and Biotechnology, 13(1), 63.
Szlas, A., Kurek, J. M., & Krejpcio, Z. (2022). The potential of L-arginine in prevention and treatment of disturbed carbohydrate and lipid metabolism-a review. Nutrients, 14(5), 961.
Takahashi, T., Kawashima, M., Kamiyoshi, M., & Tanaka, K. (1994). Arginine vasotocin receptor binding in the hen uterus (shell gland) before and after oviposition. European Journal of Endocrinology, 130(4), 366-372.
Uyanga, V. A., Xin, Q., Sun, M., Zhao, J., Wang, X., Jiao, H., & Lin, H. (2022). Research Note: Effects of dietary L-arginine on the production performance and gene expression of reproductive hormones in laying hens fed low crude protein diets. Poultry Science, 101(5), 101816.
Webster, A. B. (2004). Welfare implications of avian osteoporosis. Poultry Science, 83(2), 184-192.
Yuan, C., Bu, X. C., Yan, H. X., Lu, J. J., & Zou, X. T. (2016). Dietary L-arginine levels affect the liver protein turnover and alter the expression of genes related to protein synthesis and proteolysis of laying hens. Poultry Science, 95(2), 261-267.
Youssef, S. F., Shaban, S. A. M., & Inas, I. I. (2015). Effect of l-arginine supplementation on productive, reproductive performance, immune response and gene expression in two local chicken strains: 1-egg production, reproduction performance and immune response. Egyptian Poultry Science Journal, 35, 573-590.
Zhang, Q., Zhu, F., Liu, L., Zheng, C. W., Wang, D. H., Hou, Z. C., & Ning, Z. H. (2015). Integrating transcriptome and genome re-sequencing data to identify key genes and mutations affecting chicken eggshell qualities. PLoS One, 10(5), 0125890.
Zhang, T., Bai, S., Ding, X., Zeng, Q., Zhang, K., Lv, L., & Wang, J. (2022). Dietary theabrownin supplementation improves production performance and egg quality by promoting intestinal health and antioxidant capacity in laying hens. Animals, 12(20), 2856.
Zhou, X., Zhao, L., Luo, J., Tang, H., Xu, M., Wang, Y., & Jing, B. (2019). The toxic effects and mechanisms of nano-cu on the spleen of rats. International Journal of Molecular Sciences, 20(6), 1469.
Zhu, C., Lv, H., Chen, Z., Wang, L., Wu, X., Chen, Z., & Jiang, Z. (2017). Dietary zinc oxide modulates antioxidant capacity, small intestine development, and jejunal gene expression in weaned piglets. Biological Trace Element Research, 175, 331-338.