زمانی، مونا.؛ رضایی، منصور.؛ تیموری یانسری، اسداله.؛ سیاحزاده، هادی و نیکنفس، فریدون (1391). تأثیر سطوح مختلف انرژی و پروتئین جیره پایانی بر عملکرد، خصوصیات لاشه و غلظت لیپیدهای سرم خون جوجههای گوشتی. پژوهشهای علوم دامی، 23، 69-86.
شرکت سهامی طیور کشور، 1374. راهنمای مدیریت پرورش جوجه گوشتی آرین.
مرادی، محمد.؛ مقصودلو، شهریار.؛ رستمی، فرامرز و مصطفیلو، یوسف (1391). اثر سطوح مختلف جایگزینی دانه سویای اکسترودشده بهجای کنجاله سویا و سطوح مختلف ویتامین E بر شاخص تولید و صفات اقتصادی جوجههای گوشتی. تحقیقات تولیدات دامی، 1(4)، 15-25.
نجفآبادی، جهانیان.؛ پویا، زمانی.؛ وحید، ایقانی.؛ یزدی، رضا و زرافروز، فریبرز (1397). بررسی تأثیر جیرههای تنظیم شده براساس راهنمای پرورش سویههای آرین و راس بر عملکرد و ویژگیهای لاشه جوجههای گوشتی. علوم دامی، 31، 275-302.
References
Adedokun, S. A., & Olojede, O. C. (2019). Optimizing gastrointestinal integrity in poultry: the role of nutrients and feed additives. Frontiers in Veterinary Science, 5, 348.
Apajalahti, J., Kettunen, A., & Graham, H. (2004). Characteristics of the gastrointestinal microbial communities, with special reference to the chicken. World's Poultry Science Journal, 60(2), 223-232.
Ashour, E. A., Kamal, M., Altaie, H. A., Swelum, A. A., Suliman, G. M., Tellez-Isaias, G., & Abd El-Hack, M. E. (2024). Effect of different energy, protein levels and their interaction on productive performance, egg quality, digestibility coefficient of laying Japanese quails. Poultry Science, 103(1), 103170.
Association of Official Analytical Chemists, A. O. A. C. (2005). Official method of Analysis (18th ed). Washington, DC: Association of Officiating Analytical Chemists, method 935.14 and 992.24.
Attia, Y. A., & Hassan, S. S. (2017). Broiler tolerance to heat stress at various dietary protein/energy levels. European Poultry Science, 81, 171.
Bouvarel, I., Nys, Y., Panheleux, M., & Lescoat, P. (2010). How diet influences the quality of eggs. INRA Productions Animales, 23(23), 167-81.
Bromfield, J. I., Hoffman, L. C., Horyanto, D., & Soumeh, E. A. (2021). Enhancing growth performance, organ development, meat quality, and bone mineralisation of broiler chickens through multi-enzyme super-dosing in reduced energy diets. Animals, 11(10), 2791.
Buyse J, Decuypere E, Berghman L, Kuhn, E.R., & Vandesande, F. (1992). Effect of dietary protein content on episodic growth hormone secretion and on heat production of male broiler chickens. British Poultry Science, 33(5), 1101-1109.
Castellini, C., Mugnai, C., & Dal Bosco, A. (2002). Effect of organic production system on broiler carcass and meat quality. Meat Science, 60(3), 219-225.
Chrystal, P. V., Moss, A. F., Khoddami, A., Naranjo, V. D., Selle, P. H., & Liu, S. Y. (2020). Effects of reduced crude protein levels, dietary electrolyte balance, and energy density on the performance of broiler chickens offered maize-based diets with evaluations of starch, protein, and amino acid metabolism. Poultry Science, 99(3), 1421-1431.
Classen, H. L. (2017). Diet energy and feed intake in chickens. Animal Feed Science and Technology, 233, 13-21.
Dairo, F.A.S., Adesehinwa, A.O.K., Oluwasola, T.A., & Oluyemi, J.A. (2010). High and low dietary energy and protein levels for broiler chickens. African Journal of Agricultural Research, 5(15), 2030-2038.
De Albuquerque, R., De Faria, D. E., Junqueira, O. M., Salvador, D., De Faria Filho, D. E., & Rizzo, M. F. (2003). Effects of energy level in finisher diets and slaughter age of on the performance and carcass yield in broiler chickens. Brazilian Journal of Poultry Science, 5, 99-104. De Man, J. C., Rogosa, D., & Sharpe, M. E. (1960). A medium for the cultivation of lactobacilli. Journal of Applied Bacteriology, 23(1), 130-135.
Du, X., Wang, Y., Amevor, F. K., Ning, Z., Deng, X., Wu, Y., & Zhao, X. (2024). Effect of High Energy Low Protein Diet on Lipid Metabolism and Inflammation in the Liver and Abdominal Adipose Tissue of Laying Hens. Animals, 14(8), 1199.
Fontaine, J., Hörr, J., & Schirmer, B. (2001). Near-infrared reflectance spectroscopy enables the fast and accurate prediction of the essential amino acid contents in soy, rapeseed meal, sunflower meal, peas, fishmeal, meat meal products, and poultry meal. Journal of Agricultural and Food Chemistry, 49(1), 57-66.
Fontaine, J., Schirmer, B., & Hörr, J. (2002). Near-infrared reflectance spectroscopy (NIRS) enables the fast and accurate prediction of essential amino acid contents. 2. Results for wheat, barley, corn, triticale, wheat bran/middlings, rice bran, and sorghum. Journal of Agricultural and Food Chemistry, 50(14), 3902-3911.
Geboes, K., & Jouret‐Mourin, A. (2024). Inflammatory disorders of the small intestine. Morson and Dawson's Gastrointestinal Pathology, 5, 397-461.
González-Morán, M.G. (2016). Changes in progesterone receptor isoforms expression and in the morphology of the oviduct magnum of mature laying and aged nonlaying hens. Biochemical and Biophysical Research Communications, 478(2), 999-1005.
Jahanian, N. H., Zamani, P., Ighani, V., Reza Yazdi, K., & Zarafrouz, F. (2019). Evaluation the effect of diets formulated according to the Arian and Ross strains catalogue on performance and carcass characteristics of broilers. Animal Sciences Journal, 31(121), 275-302.
Palo, P. E., Sell, J. L., Piquer, F. J., Soto-Salanova, M. F., & Vilaseca, L. (1995). Effect of early nutrient restriction on broiler chickens: performance and development of the gastrointestinal tract. Poultry Science, 74(1), 88-101.
Ribeiro, J., Silva, V., Monteiro, A., Vieira-Pinto, M., Igrejas, G., Reis, F. S., & Poeta, P. (2023). Antibiotic resistance among gastrointestinal bacteria in broilers: A review focused on Enterococcus spp. and Escherichia coli. Animals, 13(8), 1362.
Summers, J. D., Spratt, D., & Atkinson, J. L. (1990). Restricted feeding and compensatory growth for broilers. Poultry Science, 69(11), 1855-1861.
Swilam-Hussein, E. O., Suliman, G. M., Alowaimer, A. N., Ahmed, S. H., Abd El-Hack, M. E., Taha, A. E., & Swelum, A. A. (2020). Growth, carcass characteristics, and meat quality of broilers fed a low-energy diet supplemented with a multienzyme preparation. Poultry science, 99(4), 1988-1994.
Hu, X., Li, X., Xiao, C., Kong, L., Zhu, Q., & Song, Z. (2021). Effects of dietary energy level on performance, plasma parameters, and central AMPK levels in stressed broilers. Frontiers in Veterinary Science, 8, 681-858.
Krams, I., Vrublevska, J., Cirule, D., Kivleniece, I., & Krama T. (2012). Heterophil/lymphocyte ratios predict the magnitude of humoral immune response to a novel antigen in great tits (Parus major). Comparison Biochemistry Physiology, 161(4), 422-428.
Kumar, N. M., Selvan, S. T., Srinivasan, G., Radhakrishnan, L., Prakash, S., & Venkataramanan, R. (2018). Effects of dietary protein and energy levels on meat quality, cholesterol, Haematology and serum biochemical parameters in Arni ducks of Tamil Nadu. Journal of Entomology and Zoology Studies, 6(4), 1040-1045.
Lambert, W., Berrocoso, J. D., Swart, B., Van Tol, M., Bruininx, E., & Willems, E. (2023). Reducing dietary crude protein in broiler diets positively affects litter quality without compromising growth performance whereas a reduction in dietary electrolyte balance further improves litter quality but worsens feed efficiency. Animal Feed Science and Technology, 297, 115-571.
Liu, H., Du, Y., St-Pierre, J. P., Bergholt, M. S., Autefage, H., Wang, J., & Zhang, S. (2020). Bioenergetic-active materials enhance tissue regeneration by modulating cellular metabolic state. Science advances, 6(13), 7608.
Marcu, A., Vacaru Opriş, I., Marcu, A., Nicula, M., Dronca, D., & Kelciov, B. (2012). Effect of different levels of dietary protein and energy on the growth and slaughter performance at“Hybro PN+ broiler chickens. Animal Science Biotechnology, 45(2), 424-431.
Mbachiantim, J. T., Johnson, N. C., & Ogbamgba, V. M. (2022). Liver and Kidney Health Biomarkers of Broiler Chickens Fed Vitamins A, C and E. European Journal of Science, Innovation and Technology, 2(1), 27-32.
Moradi, M., Maghsoudlou, S., Rostami, F., & Mostafalou, Y. (2012). Effect of different substitution levels of extruded soybean with soybean meal and different dietary vitamin E levels on production index and economic traits of broilers. Animal Production Research, 1, 15-24. (In Persian)
Nawaz, H., Mushtaq, T., & Yaqoob, M. (2006). Effect of varying levels of energy and protein on live performance and carcass characteristics of broiler chicks. Poultry Science, 43(4), 388-393.
Neeteson, A. M., Avendaño, S., Koerhuis, A., Duggan, B., Souza, E., Mason, J., & Bailey, R. (2023). Evolutions in Commercial Meat Poultry Breeding. Animals, 13(19), 31-50.
Ogbuewu, I. P., & Mbajiorgu, C. A. (2023). Potentials of dietary zinc supplementation in improving growth performance, health status, and meat quality of broiler chickens. Biological Trace Element Research, 201(3), 1418-1431.
Pendl, H., & Schmidt, R. E. (2024). Lymphatic and Hematopoietic System. Pathology of Pet and Aviary Birds, 1, 307-341.
Placer, Z. A., Cushman, L. L., & Johnson, B. C. (1966). Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Analytical Biochemistry, 16(2), 359-364.
Ravindran, V., Tancharoenrat, P., Zaefarian, F., & Ravindran, G. (2016). Fats in poultry nutrition: Digestive physiology and factors influencing their utilisation. Animal Feed Science and Technology, 213, 1-21.
Saini, J., Dhande, P. L., Gaikwad, S. A., Shankhapal, V. D., & Sinha, R. (2022). Responses of broiler intestinal villus morphology to different feeding procedures under scanning electron microscopy and relation to economics. Journal of Experimental Zoology India, 1, 25-29.
Saki, A. A., Matin, H. H., Tabatabai, M. M., Zamani, P., & Harsini, R. N. (2010). Microflora population, intestinal condition and performance of broilers in response to various rates of pectin and cellulose in the diet. European Poultry Science, 74, 183-8.
Schneitz, C., Kiiskinen, T., Toivonen, V., & Nasi, M. (1998). Effect of Broilact on the physicochemical conditions and nutrient digestibility in the gastrointestinal tract of broilers. Poultry Science Journal, 77(3), 426-432.
Country Poultry Joint Stock Company, 1374. Arian Broiler Breeding Management Guide.
Van der Zijpp, A. J., & Leenstra, F. R. (1980). Genetic analysis of the humoral immune response of White Leghorn chicks. Poultry Science, 59(7), 1363-1369.
Vieira, S. L., Lemme, A., Goldenberg, D. B., & Brugalli, I. (2004). Responses of growing broilers to diets with increased sulfur amino acids to lysine ratios at two dietary protein levels. Poultry Science, 83(8), 1307-1313.
Wongnaa, C. A., Mbroh, J., Mabe, F. N., Abokyi, E., Debrah, R., Dzaka, E., & Poku, F. A. (2023). Profitability and choice of commercially prepared feed and farmers’ own prepared feed among poultry producers in Ghana. Journal of Agriculture and Food Research, 12, 100611.
Youssef, I. M., Elsherbeni, A. I., Almuraee, A. A., Nass, N. M., Beyari, E. A., Alshammarii, N. M., & Saber, H. S. (2024). Influence of using synbiotics by various routes on Mandarah male chicks: intestinal bacterial counts, gut morphology and histological status. Poultry Science, 103(5), 103601.
Yu, M. W., Robinson, F. E., Clandinin, M. T., & Bodnar, L. (1990). Growth and body composition of broiler chickens in response to different regimens of feed restriction. Poultry Science, 69(12), 2074-2081.
Zamani, M., Rezaie, M., Teimouri, Y. A., Sayyah, Z. H., & Nick, N. F. (2013). The effect of different levels of energy and protein in finisher diet on performance, carcass yield and blood serum lipids of broiler chickens. Animal Science Research, 23: 69-86. (In Persian)