نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه علوم دامی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان خوزستان، سازمان تحقیقات، آموزش و ترویج کشاورزی، اهواز، ایران

2 استادیار گروه علوم دامی پردیس ابوریحان، تخصص: ژنتیک و اصلاح نژاد دام/ ژنتیک مولکولی/ بیوانفورماتیک

چکیده

هدف از این آزمایش بررسی و شناسایی RNAهای غیررمزکننده بلند (lncRNAs) مرتبط با عضله اسکلتی مرغ بومی اصفهان و جوجه تجاری راس 708 بود. پس از استخراج RNA از چهار نمونه‌ عضله سینه در سن 28 روزگی، توالی‌یابی جفتی با استفاده از پلاتفرم illumine Hiseq 2000 انجام شد. برای هم­ترازی خوانش‌ها با ژنوم مرجع مرغ اهلی، از نرم­افزار Hisat2 و جهت سرهم‌بندی رونوشت­ها از بسته نرم­افزاری Stringtie استفاده شد. در مجموع 1097 lncRNA شناسایی شد که از این تعداد 925 ژن و رونوشت بین­ژنی (اینترژنی) و 172 ژن و رونوشت اینترونی بودند. همچنین تعداد LncRNAهای جدید شناسایی­شده در دو گروه بین­ژنی و اینترونی به‌ترتیب 432 و 128 بود. آنالیز بیان افتراقی ژن منجر به شناسایی 19 ژن و 20 رونوشت با تفاوت بیان معنا‌دار بین دو گروه شد. بررسی جایگاه‌های ژنی lncRNAهای با تفاوت معنا‌دار، نشان داد که این ژن­ها در مجاورت 45 ژن رمزکننده پروتئینی قرار دارند. از این تعداد بیان پنج ژن رمزکننده پروتئینی (ژن SCD در جوجه تجاری و ژن‌های GALNT15، KLHDC4، USP7 و ASB1 در مرغ بومی) - که روند بیان آنها هم­سو با بیان lncRNAهای هم‌جوارشان بود - بین دو نژاد تفاوت معنا‌دار داشتند. بررسی عملکردی این ژن­ها نشان داد  که همگی در رشد عضله اسکلتی مؤثر هستند.  نتایج حاصل از این پژوهش  نشان داد، lncRNAهای شناسایی‌شده، احتمالاً پتانسیل تنظیم ژن­های درگیر در رشد عضله اسکلتی را داشته و می­توانند بخشی از تفاوت در سرعت رشد مشاهده‌شده بین دو نژاد مرغ مورد بررسی را توجیه نمایند.  

کلیدواژه‌ها

عنوان مقاله [English]

Identification of LncRNAs related to growth of chicken’s breast muscle using RNA-seq

نویسندگان [English]

  • Seyed Nader Albooshoke 1
  • Mohammad Reza Bakhtiarizadeh 2

1 Animal science department, Khuzestan Agricultural and Natural Resources Research and Education Center, AREEO, Ahwaz, Iran

2 Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran

چکیده [English]

This experiment was carried out to identify lncRNAs associated with skeletal muscle of the Isfahan native chicken and the Ross 708 commercial broiler chicken. To do this, after extraction of RNA from the breast muscle samples at the age of 28 days, paired-end sequencing was performed using the Illume Hiseq 2000 platform. Hisat2 software was used to align the clean reads to the chicken reference genome and the Stringtie software was used to assemble the transcripts. A total of 1097 lncRNAs were identified as 925 of which were intergenic and 172 were intronic. Also, the number of novel LncRNAs in intergenic and intronic groups were 432 and 128, respectively. Differential gene expression analysis led to the identification of 19 genes and 20 transcripts differentially expressed lncRNAs between two groups. Syntenic analysis showed that differentially expressed lncRNAs are located near by 45 protein encoding genes. Of these, the expression of five gene coding proteins (SCD gene in commercial chickens and GALNT15, KLHDC4, USP7 and ASB1 genes in native chicken) - whose expression was consistent with the expression of their lncRNA - were significantly expressed between two breeds. Functional enrichment analysis of these genes showed that all of them are involved in the skeletal muscle growth. The results of this study showed that the identified lncRNAs probably have the potential to regulate the genes involved in skeletal muscle growth. In this regard, they possibly cause the differences in growth rates between the two chicken breeds.

کلیدواژه‌ها [English]

  • Breast muscle
  • Growth
  • Isfahan native chicken
  • LncRNA
  • RNA-Seq
1.             Bennett, E. J., Rush, J., Gygi, S. P., & Harper, J. W. (2010). Dynamics of cullin-RING ubiquitin ligase network revealed by systematic quantitative proteomics. Cell, 143(6): 951-965.
2.             Cai, B., Li, Z., Ma, M., Wang, Z., Han, P., Abdalla, B. A., . . . Zhang, X. (2017). LncRNA-Six1 Encodes a Micropeptide to Activate Six1 in Cis and Is Involved in Cell Proliferation and Muscle Growth. Frontiers in Physiology, 8(230). doi:10.3389/fphys.2017.00230
3.             Dennis, G., Sherman, B. T., Hosack, D. A., Yang, J., Gao, W., Lane, H. C., & Lempicki, R. A. (2003). DAVID: database for annotation, visualization, and integrated discovery. Genome biology, 4(9): 1.
4.             Derrien, T., Johnson, R., Bussotti, G., Tanzer, A., Djebali, S., Tilgner, H., . . . Knowles, D. G. (2012). The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome research, 22(9): 1775-1789.
5.             Gong, C., Li, Z., Ramanujan, K., Clay, I., Zhang, Y., Lemire-Brachat, S., & Glass, David J. (2015). A Long Non-coding RNA, LncMyoD, Regulates Skeletal Muscle Differentiation by Blocking IMP2-Mediated mRNA Translation. Developmental Cell, 34(2): 181-191. doi:https://doi.org/10.1016/j.devcel.2015.05.009
6.             Haerty, W., & Ponting, C. P. (2015). Unexpected selection to retain high GC content and splicing enhancers within exons of multiexonic lncRNA loci. Rna.
7.             Hussain, M. R. M., Nasir, J., & Al-Aama, J. Y. (2014). Clinically significant missense variants in human GALNT3, GALNT8, GALNT12, and GALNT13 genes: intriguing in silico findings. J Cell Biochem, 115(2): 313-327. doi:10.1002/jcb.24666
8.             Kang, Y.-J., Yang, D.-C., Kong, L., Hou, M., Meng, Y.-Q., Wei, L., & Gao, G. (2017). CPC2: a fast and accurate coding potential calculator based on sequence intrinsic features. Nucleic acids research, 45(W1): W12-W16.
9.             Kim, D., Langmead, B., & Salzberg, S. L. (2015). HISAT: a fast spliced aligner with low memory requirements. Nature methods, 12(4): 357-360.
10.          Kohroki, J., Nishiyama, T., Nakamura, T., & Masuho, Y. (2005). ASB proteins interact with Cullin5 and Rbx2 to form E3 ubiquitin ligase complexes. FEBS Lett, 579(30): 6796-6802. doi:10.1016/j.febslet.2005.11.016
11.          Lange, S., Perera, S., Teh, P., & Chen, J. (2012). Obscurin and KCTD6 regulate cullin-dependent small ankyrin-1 (sAnk1. 5) protein turnover. Molecular biology of the cell, 23(13): 2490-2504.
12.          Li, A., Zhang, J., & Zhou, Z. (2014). PLEK: a tool for predicting long non-coding RNAs and messenger RNAs based on an improved k-mer scheme. BMC bioinformatics, 15(1): 311.
13.          Liu, W., & Zhao, J. (2014). Insights into the molecular mechanism of glucose metabolism regulation under stress in chicken skeletal muscle tissues. Saudi journal of biological sciences, 21(3): 197-203.
14.          Ntambi, J. M., Miyazaki, M., Stoehr, J. P., Lan, H., Kendziorski, C. M., Yandell, B. S., . . . Attie, A. D. (2002). Loss of stearoyl–CoA desaturase-1 function protects mice against adiposity. Proceedings of the National Academy of Sciences, 99(17): 11482-11486.
15.          Ørom, U. A., Derrien, T., Beringer, M., Gumireddy, K., Gardini, A., Bussotti, G., . . . Huang, Q. (2010). Long noncoding RNAs with enhancer-like function in human cells. Cell, 143(1): 46-58.
16.          Pertea, M., Kim, D., Pertea, G. M., Leek, J. T., & Salzberg, S. L. (2016). Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nature protocols, 11(9): 1650.
17.          Ren, T., Li, Z., Zhou, Y., Liu, X., Han, R., Wang, Y., . . . Kang, X. (2018). Sequencing and characterization of lncRNAs in the breast muscle of Gushi and Arbor Acres chickens. Genome, 61(5): 337-347.
18.          Schjoldager, K. T., Vester-Christensen, M. B., Bennett, E. P., Levery, S. B., Schwientek, T., Yin, W., . . . Clausen, H. (2010). O-glycosylation modulates proprotein convertase activation of angiopoietin-like protein 3: possible role of polypeptide GalNAc-transferase-2 in regulation of concentrations of plasma lipids. J Biol Chem, 285(47): 36293-36303. doi:10.1074/jbc.M110.156950
19.          Sun, L., Luo, H., Bu, D., Zhao, G., Yu, K., Zhang, C., . . . Zhao, Y. (2013). Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts. Nucleic acids research, 41(17): e166-e166.
20.          Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D. R., . . . Pachter, L. (2012). Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature protocols, 7(3): 562.
21.          Wang, L., Park, H. J., Dasari, S., Wang, S., Kocher, J.-P., & Li, W. (2013). CPAT: Coding-Potential Assessment Tool using an alignment-free logistic regression model. Nucleic acids research, 41(6): e74-e74.
22.          Wu, S. C., Kallin, E. M., & Zhang, Y. (2010). Role of H3K27 methylation in the regulation of lncRNA expression. Cell Res, 20(10): 1109-1116. doi:10.1038/cr.2010.114
23.          Wucher, V., Legeai, F., Hedan, B., Rizk, G., Lagoutte, L., Leeb, T., . . . Lohi, H. (2017). FEELnc: a tool for long non-coding RNA annotation and its application to the dog transcriptome. Nucleic acids research, 45(8): e57-e57.
24.          Yin, Z., Deng, T., Peterson, L. E., Yu, R., Lin, J., Hamilton, D. J., . . . Zhan, M. (2014). Transcriptome analysis of human adipocytes implicates the NOD-like receptor pathway in obesity-induced adipose inflammation. Molecular and cellular endocrinology, 394(1-2): 80-87.
25.          Zhou, L., Sun, K., Zhao, Y., Zhang, S., Wang, X., Li, Y., . . . Bao, X. (2015). Linc-YY1 promotes myogenic differentiation and muscle regeneration through an interaction with the transcription factor YY1. Nature communications, 6: 10026.